P3372 【模板】线段树 1

  • 153通过
  • 525提交
  • 题目提供者HansBug
  • 标签
  • 难度普及+/提高

提交  讨论  题解

最新讨论

  • 【模板】线段树1(AAAAAAAAA…
  • 【模板】线段树1
  • 洛谷评测机出问题了吗?

题目描述

如题,已知一个数列,你需要进行下面两种操作:

1.将某区间每一个数加上x

2.求出某区间每一个数的和

输入输出格式

输入格式:

第一行包含两个整数N、M,分别表示该数列数字的个数和操作的总个数。

第二行包含N个用空格分隔的整数,其中第i个数字表示数列第i项的初始值。

接下来M行每行包含3或4个整数,表示一个操作,具体如下:

操作1: 格式:1 x y k 含义:将区间[x,y]内每个数加上k

操作2: 格式:2 x y 含义:输出区间[x,y]内每个数的和

输出格式:

输出包含若干行整数,即为所有操作2的结果。

输入输出样例

输入样例#1

5 5

1 5 4 2 3

2 2 4

1 2 3 2

2 3 4

1 1 5 1

2 1 4

输出样例#1

11

8

20

说明

时空限制:1000ms,128M

数据规模:

对于30%的数据:N<=8,M<=10

对于70%的数据:N<=1000,M<=10000

对于100%的数据:N<=100000,M<=100000

(数据已经过加强^_^,保证在int64/long long数据范围内)

分析:涉及到区间操作,那么利用lazy-tag思想,当需要处理到本区间时,不必往下处理,打上标记,当需要用的时候下传标记即可.

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm> using namespace std; long long n, m,sum[],tag[]; void pushdown(int l, int r, int o)
{
if (tag[o])
{
int mid = (l + r) >> ;
tag[o * ] += tag[o];
tag[o * + ] += tag[o];
sum[o * ] += tag[o] * (mid - l + );
sum[o * + ] += tag[o] * (r - mid);
tag[o] = ;
}
} void build(int l, int r, int o)
{
if (l == r)
{
scanf("%lld", &sum[o]);
return;
}
int mid = (l + r) >> ;
build(l, mid, o * );
build(mid + , r, o * + );
sum[o] = sum[o * ] + sum[o * + ];
} void update(int L, int R, int v, int l, int r, int o)
{
if (L <= l && r <= R)
{
tag[o] += v;
sum[o] += v * (r - l + );
return;
}
pushdown(l, r, o);
int mid = (l + r) >> ;
if (L <= mid)
update(L, R, v, l, mid, o * );
if (R > mid)
update(L, R, v, mid + , r, o * + );
sum[o] = sum[o * ] + sum[o * + ];
} long long query(int L, int R, int l, int r, int o)
{
if (L <= l && r <= R)
return sum[o];
if (L > r || R < l)
return ;
pushdown(l, r, o);
int mid = (l + r) >> ;
return query(L, R, l, mid, o * ) + query(L, R, mid + , r, o * + );
} int main()
{
scanf("%lld%lld", &n, &m);
build(, n, ); for (int i = ; i <= m; i++)
{
int id, x, y, k;
scanf("%d", &id);
if (id == )
{
scanf("%d%d%d", &x, &y, &k);
update(x, y, k, , n, );
}
if (id == )
{
scanf("%d%d", &x, &y);
printf("%lld\n", query(x,y,,n,));
}
} return ;
}

洛谷P3372 【模板】线段树 1的更多相关文章

  1. 洛谷P3373 [模板]线段树 2(区间增减.乘 区间求和)

    To 洛谷.3373 [模板]线段树2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.将某区间每一个数乘上x 3.求出某区间每一个数的和 输入输出格式 输入格 ...

  2. 洛谷 - P1198 - 最大数 - 线段树

    https://www.luogu.org/problemnew/show/P1198 要问区间最大值,肯定是要用线段树的,不能用树状数组.(因为没有逆元?但是题目求的是最后一段,可以改成类似前缀和啊 ...

  3. 洛谷 P2391 白雪皑皑 线段树+优化

    题目描述: 现在有 \(N\) 片雪花排成一列. Pty 要对雪花进行$ M $次染色操作,第 \(i\)次染色操作中,把\((i*p+q)%N+1\) 片雪花和第\((i*q+p)%N+1\)片雪花 ...

  4. 【洛谷】【线段树】P1471 方差

    [题目背景:] 滚粗了的HansBug在收拾旧数学书,然而他发现了什么奇妙的东西. [题目描述:] 蒟蒻HansBug在一本数学书里面发现了一个神奇的数列,包含N个实数.他想算算这个数列的平均数和方差 ...

  5. 【洛谷】【线段树】P1047 校门外的树

    [题目描述:] 某校大门外长度为L的马路上有一排树,每两棵相邻的树之间的间隔都是1米.我们可以把马路看成一个数轴,马路的一端在数轴0的位置,另一端在L的位置:数轴上的每个整数点,即0,1,2,……,L ...

  6. 【洛谷】【线段树】P1886 滑动窗口

    [题目描述:] 现在有一堆数字共N个数字(N<=10^6),以及一个大小为k的窗口.现在这个从左边开始向右滑动,每次滑动一个单位,求出每次滑动后窗口中的最大值和最小值. [输入格式:] 输入一共 ...

  7. 【洛谷】【线段树】P3353 在你窗外闪耀的星星

    [题目描述:] /* 飞逝的的时光不会模糊我对你的记忆.难以相信从我第一次见到你以来已经过去了3年.我仍然还生动地记得,3年前,在美丽的集美中学,从我看到你微笑着走出教室,你将头向后仰,柔和的晚霞照耀 ...

  8. 洛谷P5280 [ZJOI2019]线段树

      https://www.luogu.org/problemnew/show/P5280 省选的时候后一半时间开这题,想了接近两个小时的各种假做法,之后想的做法已经接近正解了,但是有一些细节问题理不 ...

  9. 洛谷P3374(线段树)(询问区间和,支持单点修改)

    洛谷P3374 //询问区间和,支持单点修改 #include <cstdio> using namespace std; ; struct treetype { int l,r,sum; ...

  10. 洛谷 P5280 - [ZJOI2019]线段树(线段树+dp,神仙题)

    题面传送门 神仙 ZJOI,不会做啊不会做/kk Sooke:"这八成是考场上最可做的题",由此可见 ZJOI 之毒瘤. 首先有一个非常显然的转化,就是题目中的"将线段树 ...

随机推荐

  1. apply和call

    call和apply是定义在Function.prototype上的方法. 共同点:可以自由指定函数执行时内部this的指向 不同点:传参方式不同 call方法: 语法:call(thisObj,Ob ...

  2. 北大poj-1088

    滑雪 Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 88484   Accepted: 33177 Description ...

  3. 多比(SVG/VML)图形控件多比(SVG/VML)图形拓扑图控件免费下载地址

    多比图形控件是一款基于Web(VML和SVG技术)的矢量图形控件, 类似于网页上的Visio控件拓扑图软件,是目前国内外最佳的基于web的工作流设计器.工作流流程监视器解决方案. 可广泛应用于包括:电 ...

  4. Reverse-Daily(2)-wow

    链接:http://pan.baidu.com/s/1eS9JNP4 密码:ltl4 本体分析比较简单,算法是解一个22元一次方程 这里引入了numpy这样一个python库,灰常强大 import ...

  5. OD调试篇7--笔记及解题报告

    MFC:微软基础类库(英语:Microsoft Foundation Classes,简称MFC)是一个微软公司提供的类库(class libraries),以C++类的形式封装了Windows AP ...

  6. iOS运行时工具-cycript

    cycript是大神saurik开发的一个非常强大的工具,可以让开发者在命令行下和应用交互,在运行时查看和修改应用.它确实可以帮助你破解一些应用,但我觉得这个工具主要还是用来学习其他应用的设计(主要是 ...

  7. 【转】精心推荐几款超实用的 CSS 开发工具

    原文转自:http://www.html5cn.org/article-5741-1.html 摘要: 当你开发一个网站或 Web 应用程序的时候,有合适的工具,绝对可以帮助您节省大量的时间.在这篇文 ...

  8. day13_API第三天

    1.StringBuffer类(掌握) 1.概念      字符串缓冲区类 2.机制      StringBuffer采用的是缓冲区机制. 一开始,首先开辟一些空间,然后,随着数据的增多,还可以继续 ...

  9. jsp状态管理

    http无状态协议 服务器记不住你 每次浏览器访问,服务器不会特点保存相应信息,故记不住你 jsp状态存储的两种机制 cookie 存储在客户端 用途: 1.简化登陆 2.追踪特定对象 3.保存用户常 ...

  10. MXNet设计笔记之:深度学习的编程模式比较

    市面上流行着各式各样的深度学习库,它们风格各异.那么这些函数库的风格在系统优化和用户体验方面又有哪些优势和缺陷呢?本文旨在于比较它们在编程模式方面的差异,讨论这些模式的基本优劣势,以及我们从中可以学到 ...