SPF
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 7678   Accepted: 3489

Description

Consider the two networks shown below. Assuming that data moves around these networks only between directly connected nodes on a peer-to-peer basis, a failure of a single node, 3, in the network on the left would prevent some of the still available nodes from communicating with each other. Nodes 1 and 2 could still communicate with each other as could nodes 4 and 5, but communication between any other pairs of nodes would no longer be possible.

Node 3 is therefore a Single Point of Failure (SPF) for this network. Strictly, an SPF will be defined as any node that, if unavailable, would prevent at least one pair of available nodes from being able to communicate on what was previously a fully connected network. Note that the network on the right has no such node; there is no SPF in the network. At least two machines must fail before there are any pairs of available nodes which cannot communicate. 

Input

The input will contain the description of several networks. A network description will consist of pairs of integers, one pair per line, that identify connected nodes. Ordering of the pairs is irrelevant; 1 2 and 2 1 specify the same connection. All node numbers will range from 1 to 1000. A line containing a single zero ends the list of connected nodes. An empty network description flags the end of the input. Blank lines in the input file should be ignored.

Output

For each network in the input, you will output its number in the file, followed by a list of any SPF nodes that exist.

The first network in the file should be identified as "Network #1", the second as "Network #2", etc. For each SPF node, output a line, formatted as shown in the examples below, that identifies the node and the number of fully connected subnets that remain when that node fails. If the network has no SPF nodes, simply output the text "No SPF nodes" instead of a list of SPF nodes.

Sample Input

1 2
5 4
3 1
3 2
3 4
3 5
0 1 2
2 3
3 4
4 5
5 1
0 1 2
2 3
3 4
4 6
6 3
2 5
5 1
0 0

Sample Output

Network #1
SPF node 3 leaves 2 subnets Network #2
No SPF nodes Network #3
SPF node 2 leaves 2 subnets
SPF node 3 leaves 2 subnets

题意: 求割点 同时求出删除当前点后,分成几个连通分量。

思路:

tarjan算法求割点。 tarjan处理强连通 其实都是基于dfs的。同时维护2个数组。 dfn[] 和 low[] 分别表示第i点时的深度,和通过能够到达的祖先的深度。

求强连通的时候,如果low[i] == dfn[i] 说明栈内当前点以上的点 都是强连通块里面的。也就是说i的子树中不能到达i的祖先。

在求割点的时候,如果low[v] > dfn[u](v是u的子节点)说明v不能到达u的祖先 说明删除u后 v的子树从原图中分离。

#include<set>
#include<map>
#include<queue>
#include<stack>
#include<cmath>
#include<string>
#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define INF 1000000001
#define MOD 1000000007
#define ll long long
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define pi acos(-1.0)
using namespace std;
const int MAXN = ;
struct node
{
int to;
int next;
}edge[MAXN*];
int ind,pre[MAXN],dfn[MAXN],low[MAXN],num[MAXN],n,vis[MAXN];
void add(int x,int y)
{
edge[ind].to = y;
edge[ind].next = pre[x];
pre[x] = ind ++;
}
void dfs(int rt,int d)
{
vis[rt] = ;
dfn[rt] = low[rt] = d;
for(int i = pre[rt]; i != -; i = edge[i].next){
int t = edge[i].to;
if(!vis[t]){
dfs(t,d + );
low[rt] = min(low[rt],low[t]);
if(low[t] >= dfn[rt]){
num[rt] ++;
}
}
else {
low[rt] = min(low[rt],dfn[t]);
}
}
}
int main()
{
int x,y,ff = ;
while(){
n = ;
scanf("%d",&x);
if(!x)break;
scanf("%d",&y);
ind = , memset(pre,-,sizeof(pre));
add(x,y), add(y,x);
n = max(x,y);
while(){
scanf("%d",&x);
if(!x)break;
scanf("%d",&y);
n = max(n,x);
n = max(n,y);
add(x,y), add(y,x);
}
memset(vis,,sizeof(vis));
memset(dfn,,sizeof(dfn));
memset(low,,sizeof(low));
memset(num,,sizeof(num));
dfs(,);
int flag = ;
if(ff >= )printf("\n");
printf("Network #%d\n",++ff);
num[] = num[] ? num[] - : ;
for(int i = ; i <= n; i++){
if(num[i]){
flag = ;
printf(" SPF node %d leaves %d subnets\n",i,num[i] + );
}
}
if(!flag){
printf(" No SPF nodes\n");
}
}
return ;
}

poj1523 求割点 tarjan的更多相关文章

  1. poj1523求割点以及割后连通分量数tarjan算法应用

    无向图,双向通道即可,tarjan算法简单应用.点u是割点,条件1:u是dfs树根,则u至少有2个孩子结点.||条件2:u不是根,dfn[u]=<low[v],v是u的孩子结点,而且每个这样的v ...

  2. zoj 1119 / poj 1523 SPF (典型例题 求割点 Tarjan 算法)

    poj : http://poj.org/problem?id=1523 如果无向图中一个点 u 为割点 则u 或者是具有两个及以上子女的深度优先生成树的根,或者虽然不是一个根,但是它有一个子女 w, ...

  3. uva 315 Network(无向图求割点)

    https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  4. poj 1523 SPF(tarjan求割点)

    本文出自   http://blog.csdn.net/shuangde800 ------------------------------------------------------------ ...

  5. Tarjan求割点和桥

    by szTom 前置知识 邻接表存储及遍历图 tarjan求强连通分量 割点 割点的定义 在一个无向图中,如果有一个顶点集合,删除这个顶点集合以及这个集合中所有顶点相关联的边以后,图的连通分量增多, ...

  6. Tarjan应用:求割点/桥/缩点/强连通分量/双连通分量/LCA(最近公共祖先)【转】【修改】

    一.基本概念: 1.割点:若删掉某点后,原连通图分裂为多个子图,则称该点为割点. 2.割点集合:在一个无向连通图中,如果有一个顶点集合,删除这个顶点集合,以及这个集合中所有顶点相关联的边以后,原图变成 ...

  7. [学习笔记]tarjan求割点

    都口胡了求割边,就顺便口胡求割点好了QAQ 的定义同求有向图强连通分量. 枚举当前点的所有邻接点: 1.如果某个邻接点未被访问过,则访问,并在回溯后更新 2.如果某个邻接点已被访问过,则更新 对于当前 ...

  8. tarjan算法求割点cojs 8

    tarjan求割点:cojs 8. 备用交换机 ★★   输入文件:gd.in   输出文件:gd.out   简单对比时间限制:1 s   内存限制:128 MB [问题描述] n个城市之间有通讯网 ...

  9. UESTC 900 方老师炸弹 --Tarjan求割点及删点后连通分量数

    Tarjan算法. 1.若u为根,且度大于1,则为割点 2.若u不为根,如果low[v]>=dfn[u],则u为割点(出现重边时可能导致等号,要判重边) 3.若low[v]>dfn[u], ...

随机推荐

  1. Mecanim 动作复用示例

    Mecanim动作复用 资源包 四个动画文件 一个Controller 不同的模型 让模型都生成Avter,然后让多个模型重用一套动作 复用动作预览 动画状态机 资源地址 Assets Store地址 ...

  2. python黑客编程之端口爆破

    #coding:utf-8 from optparse import OptionParser import time,re,sys,threading,Queue import ftplib,soc ...

  3. hdu 1166

    敌兵布阵 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submi ...

  4. RecyclerView,CardView导入和使用(Demo)

    简介: 这篇文章是ANDROID L——Material Design详解(UI控件)的一个补充或者说是应用实例,如果有时间建议大家稍微浏览一下上篇文章. 本文主要介绍Android L新增加的两个U ...

  5. AWS CLI 中使用S3存储

    登录 通过控制面板, 在S3管理器中创建一个新的bucket 所有AWS服务 -> 安全&身份 -> IAM -> 组, 创建一个新的组, 例如 "s3-user& ...

  6. workqueue机制分析之process_one_work分析

    工作者线程不断执行,从work_poll结构中卸下一个work, 然后进入函数process_one_work 来执行这个work. process_one_work(struct worker *w ...

  7. css中如何设置字体

    来自百度的回答: 建议使用font-family: "Microsoft YaHei";支持UTF-8和GB2312字符集. 不生效的3种情况:1.当此属性定义的是全局样式时,对于 ...

  8. 笔记 (note)

    笔记[问题描述]给定一个长度为m的序列a,下标编号为1~m.序列的每个元素都是1~n的整数.定义序列的代价为m−1 ∑|ai+1-ai| i=1 你现在可以选择两个数x和y,并将序列a中所有的x改成y ...

  9. 字符串匹配(hash算法)

    hash函数对大家来说不陌生吧 ? 而这次我们就用hash函数来实现字符串匹配. 首先我们会想一下二进制数. 对于任意一个二进制数,我们将它化为10进制的数的方法如下(以二进制数1101101为例): ...

  10. C#微信开发小白成长教程一(公众平台的工作原理与调试环境部署,附视频)

    黑夜给了我黑色的眼睛,我决定录视频到天明.半年前的现在,我还在苦逼着加着班,半年后的今天我依旧苦逼着加着班.不过现在的是为自己加班,作为一个资深程序小白,一个月前我光荣的成了一个不称职的资本家,不称职 ...