poj1523 求割点 tarjan
| Time Limit: 1000MS | Memory Limit: 10000K | |
| Total Submissions: 7678 | Accepted: 3489 |
Description
Node 3 is therefore a Single Point of Failure (SPF) for this network. Strictly, an SPF will be defined as any node that, if unavailable, would prevent at least one pair of available nodes from being able to communicate on what was previously a fully connected network. Note that the network on the right has no such node; there is no SPF in the network. At least two machines must fail before there are any pairs of available nodes which cannot communicate. 
Input
Output
The first network in the file should be identified as "Network #1", the second as "Network #2", etc. For each SPF node, output a line, formatted as shown in the examples below, that identifies the node and the number of fully connected subnets that remain when that node fails. If the network has no SPF nodes, simply output the text "No SPF nodes" instead of a list of SPF nodes.
Sample Input
1 2
5 4
3 1
3 2
3 4
3 5
0 1 2
2 3
3 4
4 5
5 1
0 1 2
2 3
3 4
4 6
6 3
2 5
5 1
0 0
Sample Output
Network #1
SPF node 3 leaves 2 subnets Network #2
No SPF nodes Network #3
SPF node 2 leaves 2 subnets
SPF node 3 leaves 2 subnets
题意: 求割点 同时求出删除当前点后,分成几个连通分量。
思路:
tarjan算法求割点。 tarjan处理强连通 其实都是基于dfs的。同时维护2个数组。 dfn[] 和 low[] 分别表示第i点时的深度,和通过能够到达的祖先的深度。
求强连通的时候,如果low[i] == dfn[i] 说明栈内当前点以上的点 都是强连通块里面的。也就是说i的子树中不能到达i的祖先。
在求割点的时候,如果low[v] > dfn[u](v是u的子节点)说明v不能到达u的祖先 说明删除u后 v的子树从原图中分离。
#include<set>
#include<map>
#include<queue>
#include<stack>
#include<cmath>
#include<string>
#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define INF 1000000001
#define MOD 1000000007
#define ll long long
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define pi acos(-1.0)
using namespace std;
const int MAXN = ;
struct node
{
int to;
int next;
}edge[MAXN*];
int ind,pre[MAXN],dfn[MAXN],low[MAXN],num[MAXN],n,vis[MAXN];
void add(int x,int y)
{
edge[ind].to = y;
edge[ind].next = pre[x];
pre[x] = ind ++;
}
void dfs(int rt,int d)
{
vis[rt] = ;
dfn[rt] = low[rt] = d;
for(int i = pre[rt]; i != -; i = edge[i].next){
int t = edge[i].to;
if(!vis[t]){
dfs(t,d + );
low[rt] = min(low[rt],low[t]);
if(low[t] >= dfn[rt]){
num[rt] ++;
}
}
else {
low[rt] = min(low[rt],dfn[t]);
}
}
}
int main()
{
int x,y,ff = ;
while(){
n = ;
scanf("%d",&x);
if(!x)break;
scanf("%d",&y);
ind = , memset(pre,-,sizeof(pre));
add(x,y), add(y,x);
n = max(x,y);
while(){
scanf("%d",&x);
if(!x)break;
scanf("%d",&y);
n = max(n,x);
n = max(n,y);
add(x,y), add(y,x);
}
memset(vis,,sizeof(vis));
memset(dfn,,sizeof(dfn));
memset(low,,sizeof(low));
memset(num,,sizeof(num));
dfs(,);
int flag = ;
if(ff >= )printf("\n");
printf("Network #%d\n",++ff);
num[] = num[] ? num[] - : ;
for(int i = ; i <= n; i++){
if(num[i]){
flag = ;
printf(" SPF node %d leaves %d subnets\n",i,num[i] + );
}
}
if(!flag){
printf(" No SPF nodes\n");
}
}
return ;
}
poj1523 求割点 tarjan的更多相关文章
- poj1523求割点以及割后连通分量数tarjan算法应用
无向图,双向通道即可,tarjan算法简单应用.点u是割点,条件1:u是dfs树根,则u至少有2个孩子结点.||条件2:u不是根,dfn[u]=<low[v],v是u的孩子结点,而且每个这样的v ...
- zoj 1119 / poj 1523 SPF (典型例题 求割点 Tarjan 算法)
poj : http://poj.org/problem?id=1523 如果无向图中一个点 u 为割点 则u 或者是具有两个及以上子女的深度优先生成树的根,或者虽然不是一个根,但是它有一个子女 w, ...
- uva 315 Network(无向图求割点)
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...
- poj 1523 SPF(tarjan求割点)
本文出自 http://blog.csdn.net/shuangde800 ------------------------------------------------------------ ...
- Tarjan求割点和桥
by szTom 前置知识 邻接表存储及遍历图 tarjan求强连通分量 割点 割点的定义 在一个无向图中,如果有一个顶点集合,删除这个顶点集合以及这个集合中所有顶点相关联的边以后,图的连通分量增多, ...
- Tarjan应用:求割点/桥/缩点/强连通分量/双连通分量/LCA(最近公共祖先)【转】【修改】
一.基本概念: 1.割点:若删掉某点后,原连通图分裂为多个子图,则称该点为割点. 2.割点集合:在一个无向连通图中,如果有一个顶点集合,删除这个顶点集合,以及这个集合中所有顶点相关联的边以后,原图变成 ...
- [学习笔记]tarjan求割点
都口胡了求割边,就顺便口胡求割点好了QAQ 的定义同求有向图强连通分量. 枚举当前点的所有邻接点: 1.如果某个邻接点未被访问过,则访问,并在回溯后更新 2.如果某个邻接点已被访问过,则更新 对于当前 ...
- tarjan算法求割点cojs 8
tarjan求割点:cojs 8. 备用交换机 ★★ 输入文件:gd.in 输出文件:gd.out 简单对比时间限制:1 s 内存限制:128 MB [问题描述] n个城市之间有通讯网 ...
- UESTC 900 方老师炸弹 --Tarjan求割点及删点后连通分量数
Tarjan算法. 1.若u为根,且度大于1,则为割点 2.若u不为根,如果low[v]>=dfn[u],则u为割点(出现重边时可能导致等号,要判重边) 3.若low[v]>dfn[u], ...
随机推荐
- Sublime3安装过程及常用插件安装及常用快捷键
1 先去http://www.sublimetext.com/官网下载软件,然后网上找一个验证码,注册完成. 2 安装Package Control ,Package Control 插件是一个方 ...
- Android中常用的布局
一般分为5大类. Android中所有的空间第一字母都是大写 1.线性布局 LinearLayout 2.相对布局 RelativeLayout 3.帧布局--分层显示 FrameLayout 4. ...
- android整体架构概述--①
android的logo 是由设计师去厕所时来的灵感. 其中android的命名都是以甜点的名字来定的. android的系统一共有四层. 1.Linux内核和驱动层 2.函数库 由C或C++编写 ...
- 规范化注释 VVDocumenter的使用方法
很多时候,为了快速开发,很多的技术文档都是能省则省,这个时候注释就变得异常重要,但是每次都要手动输入规范化的注释,着实也麻烦,但有了VVDocumenter,规范化的注释,主需要输入三个斜线“///” ...
- Centos5.8 安装 ImageMagick 6.8.9-3
下载最新的ImageMagick源码包 ImageMagick-6.8.9-3.x86_64.rpm 直接prm -ivh 安装提示错误 error: Failed dependencies: lib ...
- mysql新建用户的方法
新增 insert into mysql.user(Host,User,Password,ssl_cipher,x509_issuer,x509_subject) values("local ...
- BZOJ 1854 【Scoi2010】 游戏
Description lxhgww最近迷上了一款游戏,在游戏里,他拥有很多的装备,每种装备都有2个属性,这些属性的值用[1,10000]之间的数表示.当他使用某种装备时,他只能使用该装备的某一个属性 ...
- git push ERROR: missing Change-Id in commit message footer
今天上传代码时候报告错误:$ git push origin HEAD:refs/for/branch*Counting objects: 7, done.Delta compression usin ...
- 用C++和shell获取本机CPU、网卡IO、内存、磁盘等的基本信息
用C++和shell获取本机CPU.网卡.内存.磁盘等的基本信息: 由于对C++相关的函数没多少了解,但是觉得用shell反而相对简单一些: 一.shell脚本,用来辅助C++获取主机的资源使用信息 ...
- weblogic下部署应用时slf4j与logbak冲突的解决办法
今天在weblogic上部署一个使用logback的应用时,报错如下: java.lang.IllegalArgumentException: Invalid 'logbackConfigLocati ...