Secret Code

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 670    Accepted Submission(s): 109

Problem Description
The Sarcophagus itself is locked by a secret numerical code. When somebody wants to open it, he must know the code and set it exactly on the top of the Sarcophagus. A very intricate mechanism then opens the cover. If an incorrect code is entered, the tickets inside would catch fire immediately and they would have been lost forever. The code (consisting of up to 100 integers) was hidden in the Alexandrian Library but unfortunately, as you probably know, the library burned down completely. 
But an almost unknown archaeologist has obtained a copy of the code something during the 18th century. He was afraid that the code could get to the ``wrong people'' so he has encoded the numbers in a very special way. He took a random complex number B that was greater (in absolute value) than any of the encoded numbers. Then he counted the numbers as the digits of the system with basis B. That means the sequence of numbers an, an-1, ..., a1, a0 was encoded as the number X = a0 + a1B + a2B2 + ...+ anBn. 
Your goal is to decrypt the secret code, i.e. to express a given number X in the number system to the base B. In other words, given the numbers X and Byou are to determine the ``digit'' a0 through an. 
 
Input
The input consists of T test cases. The number of them (T) is given on the first line of the input file. Each test case consists of one single line containing four integer numbers Xr, Xi, Br, Bi (|Xr|,|Xi| <= 1000000, |Br|,|Bi| <= 16). These numbers indicate the real and complex components of numbers X and B, i.e. X = Xr + i.Xi, B = Br + i.Bi. B is the basis of the system (|B| > 1), X is the number you have to express. 
 
Output
Your program must output a single line for each test case. The line should contain the ``digits'' an, an-1, ..., a1, a0, separated by commas. The following conditions must be satisfied:  for all i in {0, 1, 2, ...n}: 0 <= ai < |B|  X = a0 + a1B + a2B2 + ...+ anBn  if n > 0 then an <> 0  n <= 100  If there are no numbers meeting these criteria, output the sentence "The code cannot be decrypted.". If there are more possibilities, print any of them. 
 
Sample Input
4
-935 2475 -11 -15
1 0 -3 -2
93 16 3 2
191 -192 11 -12
 
Sample Output
8,11,18
1
The code cannot be decrypted.
16,15

 #include<stdio.h>
#include<string.h>
const int M = ;
typedef __int64 ll ;
ll xr , xi , br , bi ;
int n ;
ll ini ;
ll a[M] ;
ll t ; bool dfs (ll l , ll r , int dep)
{
if (dep > ) return false ;
if (l == && r == ) {
n = dep ;
return true ;
}
ll al , ar ;
for (int i = ; i * i < ini ; i ++) {
al = l - i ; ar = r ;
if ( ( (1ll * al * br + 1ll *ar * bi) % t ) == && ((1ll *ar * br -1ll * al * bi) % t) == ) {
a[dep] = i ;
if ( dfs ( ((1ll * al * br + 1ll * ar * bi) / t) , ((1ll * ar * br - 1ll * al * bi) / t) , dep + ) )
return true ;
}
}
return false ;
} int main ()
{
//freopen ("a.txt" , "r" , stdin ) ;
ll T ;
scanf ("%I64d" , &T ) ;
while (T --) {
scanf ("%I64d%I64d%I64d%I64d" , &xr , &xi , &br , &bi ) ;
t = br * br + bi * bi ;
ini = br * br + bi * bi ;
if (dfs (xr , xi , ) ) {
if (n == ) puts ("") ;
else {
for (int i = n - ; i >= ; i --) printf ("%I64d%c" , a[i] , i == ? '\n' : ',') ;
}
}
else puts ("The code cannot be decrypted.") ;
}
return ;
}

秦九韶算法:

一般地,一元n次多项式的求值需要经过[n(n+1)]/2次乘法和n次加法,而秦九韶算法只需要n次乘法和n次加法。在人工计算时,一次大大简化了运算过程。
把一个n次多项式
改写成如下形式:
多项式的值时,首先计算最内层括号内一次多项式的值,即
然后由内向外逐层计算一次多项式的值,即
这样,求n次多项式f(x)的值就转化为求n个一次多项式的值。
结论:对于一个n次多项式,至多做n次乘法和n次加法。(当最高次项系数不为1时分别为n次乘法和n次加法 ,当最高次项系数为1时,分别为n-1 次乘法 ,n次加法。)
复数除法运算:
设复数 a + bi  ,  c + di ;
t = c * c + d * d ;
则 (a + bi) / (c + di ) = (ac + bd) / t + (bc - ad) / t  * i ;

hdu.1111.Secret Code(dfs + 秦九韶算法)的更多相关文章

  1. HDU 1111 Secret Code (DFS)

    题目链接 题意 : 给你复数X的Xr和Xi,B的Br和Bi,让你求一个数列,使得X = a0 + a1B + a2B2 + ...+ anBn,X=Xr+i*Xi,B=Br+Bi*i : 思路 : 首 ...

  2. HDU 1111 Secret Code(数论的dfs)

    Secret Code Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submit ...

  3. hdu 1111 Secret Code

    http://acm.hdu.edu.cn/showproblem.php?pid=1111 复数除法: #include <cstdio> #include <cstring> ...

  4. [swustoj 679] Secret Code

    Secret Code 问题描述 The Sarcophagus itself is locked by a secret numerical code. When somebody wants to ...

  5. 秦九韶算法 & 三分法

    前言 今天考试出了一个题 郭郭模拟退火骗了75分 于是再次把咕咕了好久的模退提上日程 如果进展顺利 明后天应该会开爬山算法和模退的博客笔记 今天先把今天考试的正解学习一下--三分法 引入 老规矩上板子 ...

  6. Android Secret Code

    我们很多人应该都做过这样的操作,打开拨号键盘输入*#*#4636#*#*等字符就会弹出一个界面显示手机相关的一些信息,这个功能在Android中被称为android secret code,除了这些系 ...

  7. bzoj3157国王奇遇记(秦九韶算法+矩乘)&&bzoj233AC达成

    bz第233题,用一种233333333的做法过掉了(为啥我YY出一个算法来就是全网最慢的啊...) 题意:求sigma{(i^m)*(m^i),1<=i<=n},n<=10^9,m ...

  8. Android 编程下的 Secret Code

    我们很多人应该都做过这样的操作,打开拨号键盘输入 *#*#4636#*#* 等字符就会弹出一个界面显示手机相关的一些信息,这个功能在 Android 中被称为 Android Secret Code, ...

  9. The secret code

    The secret code Input file: stdinOutput file: stTime limit: 1 sec Memory limit: 256 MbAfter returnin ...

随机推荐

  1. log4j属性详解

    Log4j有三个主要的组件:Loggers(记录器),Appenders  (输出源)和Layouts(布局).这里可简单理解为日志类别,日志要输出的地方和日志以何种形式输出.综合使用这三个组件可以轻 ...

  2. spring jdbc分离数据库代码和java代码

    读取配置文件类 package com.eshore.ismp.contract.sql; import java.io.FileInputStream; import java.io.FileNot ...

  3. 理解与应用css中的display属性

    理解与应用css中的display属性 display属性是我们在前端开发中常常使用的一个属性,其中,最常见的有: none block inline inline-block inherit 下面, ...

  4. restClient访问SSL

    IRestClient client = new RestClient("https://xxx.com/aa/bb"); "; ); ServicePointManag ...

  5. oracle自定义判断数据是否为数值函数

    CREATE OR REPLACE FUNCTION isnumeric (str IN VARCHAR2) RETURN NUMBER IS v_str ); BEGIN IF str IS NUL ...

  6. acm 选夫婿

    选夫婿1 Time Limit: 1000MS Memory limit: 32768K 题目描述     倾国倾城的大家闺秀潘小姐要选夫婿啦!武林中各门各派,武林外各大户人家,闻讯纷纷前来,强势围观 ...

  7. C#----Get和Set在属性中的使用

    Get和Set在属性中的作用: 第一个作用:保证数据的安全性,对字段进行了有效的保护. 第二个作用:起到监视作用 private int width=0; public int Width { get ...

  8. Cloudservie将LocalStroage中的内容通过WAD自动上传到BLOB中

    开发云服务程序,如果使用Local stroage存储我们临时生成的日志或者文件并将它们自动上传到BLOB中,可以通过WAD来实现,具体如下: 1.配置webrole,开启Local stroage功 ...

  9. yourphp点击刷新验证码

    加入css <script type="text/javascript" src="./Public/Js/my.js"></script&g ...

  10. ASP.NET MVC URL重写与优化(进阶篇)-继承RouteBase玩转URL

    http://www.cnblogs.com/John-Connor/archive/2012/05/03/2478821.html 引言-- 在初级篇中,我们介绍了如何利用基于ASP.NET MVC ...