http://www.lydsy.com/JudgeOnline/problem.php?id=3052

题意:n个带颜色的点(m种),q次询问,每次询问x到y的路径上sum{w[次数]*v[颜色]},可以单点修改颜色。(n, m, q<=100000)

#include <bits/stdc++.h>
using namespace std;
const int N=100005, M=100005;
typedef long long ll;
inline int getint() { int x=0; char c=getchar(); while(c<'0'||c>'9') c=getchar(); while(c>='0'&&c<='9') (x*=10)+=c-'0', c=getchar(); return x; }
inline void print(ll a) { if(!a) return; print(a/10); putchar('0'+(a%10));}
int ihead[N], cnt, blo[N<<1], f[N][17], FF[N], LL[N], tot, dep[N], cal[N], pos[N<<1], col[M], n, m, W[N], V[M], qu, n_ask, n_tm, col_pre[N];
ll Ans[M], ans;
bool st[N];
struct E { int next, to; }e[N<<1];
struct Q { int x, y, lca, id, tm; }q[M];
struct T { int x, y, last; }Time[M];
inline bool cmp(const Q &a, const Q &b) { return blo[a.x]==blo[b.x]?(blo[a.y]==blo[b.y]?a.tm<b.tm:blo[a.y]<blo[b.y]):blo[a.x]<blo[b.x]; }
inline void add(int x, int y) { e[++cnt]=(E){ihead[x], y}; ihead[x]=cnt; e[++cnt]=(E){ihead[y], x}; ihead[y]=cnt; }
void dfs(int x) {
pos[FF[x]=++tot]=x;
for(int i=1; i<=16; ++i) f[x][i]=f[f[x][i-1]][i-1];
for(int i=ihead[x]; i; i=e[i].next) if(e[i].to!=f[x][0])
dep[e[i].to]=dep[x]+1, f[e[i].to][0]=x, dfs(e[i].to);
pos[LL[x]=++tot]=x;
}
inline int LCA(int x, int y) {
if(dep[x]<dep[y]) swap(x, y);
int d=dep[x]-dep[y];
for(int i=16; i>=0; --i) if((d>>i)&1) x=f[x][i]; if(x==y) return x;
for(int i=16; i>=0; --i) if(f[x][i]!=f[y][i]) x=f[x][i], y=f[y][i];
return f[x][0];
}
inline void update(int x) {
if(st[x]) { ans-=(ll)V[col[x]]*W[cal[col[x]]]; --cal[col[x]]; }
else { ++cal[col[x]]; ans+=(ll)V[col[x]]*W[cal[col[x]]]; }
st[x]=!st[x];
}
inline void change(int a, int b) {
if(st[a]) { update(a); col[a]=b; update(a); }
else col[a]=b;
}
inline void timechange(int &now, int goal) {
while(now<goal) ++now, change(Time[now].x, Time[now].y);
while(now>goal) change(Time[now].x, Time[now].last), --now;
}
void work() {
int l=1, r=0, now=0, nl, nr;
sort(q+1, q+1+n_ask, cmp);
for(int i=1; i<=n_ask; ++i) {
nl=q[i].x; nr=q[i].y;
timechange(now, q[i].tm);
while(l<nl) update(pos[l++]);
while(l>nl) update(pos[--l]);
while(r<nr) update(pos[++r]);
while(r>nr) update(pos[r--]);
if(q[i].lca) update(q[i].lca);
Ans[q[i].id]=ans;
if(q[i].lca) update(q[i].lca);
}
while(r>=l) update(pos[r--]);
}
void pre() {
dfs((n+1)>>1);
int nn=n<<1, sq=pow(nn, 2.0/3)*0.5;
for(int i=1; i<=nn; ++i) blo[i]=(i-1)/sq;
for(int i=1; i<=qu; ++i) {
int type=getint(), x=getint(), y=getint();
if(!type) {
++n_tm;
Time[n_tm]=(T){x, y, col_pre[x]}; col_pre[x]=y;
continue;
}
++n_ask;
if(FF[x]>FF[y]) swap(x, y);
int lca=LCA(x, y);
if(lca==x) q[n_ask]=(Q){FF[x], FF[y], 0, n_ask, n_tm};
else q[n_ask]=(Q){LL[x], FF[y], lca, n_ask, n_tm};
}
}
int main() {
n=getint(); m=getint(); qu=getint();
for(int i=1; i<=m; ++i) V[i]=getint();
for(int i=1; i<=n; ++i) W[i]=getint();
for(int i=1; i<n; ++i) {
int x=getint(), y=getint();
add(x, y);
}
for(int i=1; i<=n; ++i) col[i]=col_pre[i]=getint();
pre();
work();
for(int i=1; i<=n_ask; ++i) print(Ans[i]), puts("");
return 0;
}

  

一开始我直接在每个修改之间计算答案= =然后果断T了= =QAQ

膜拜vfk.....

首先分块是三元分块!并且要进行修改的操作以及逆操作(最坏变成O(n)辣= =)

第三元就是询问的时间。

然后写完后发现还是好慢QAQ

因为我把块大小就是分成了O(n^0.5)QAQ

继续膜拜vfk

发现要分块成O(n^(2/3)).....则有O(n^(1/3))个块...然后具体证明请看 http://vfleaking.blog.163.com/blog/static/174807634201311011201627/

艾雨青大神犇教导我们,将树分块!
如前所述的分块方法。当时艾雨青神犇讲题的时候的分块方法没听清 T_T,上面的分块方法是我自己YY出来的。
取B = n ^ (2 / 3),设 nBlo为块的个数,用bloNum[v]来代表v所在块的编号。(block number)
则同一个块内任意两结点的距离为O(n ^ (2 / 3))的。
按照之前我说的方式对询问进行排序,按顺序作答。
注意到(bloNum[curV], bloNum[curU])一共有nBlo ^ 2个取值。
那么如果移动一次,curV还在原来的块,curU还在原来的块,这种移动的总时间复杂度是O(nBlo ^ 2 * q)的。(因为curTi还要移动)
如果移动一次,curV不在原来的块,curU不在原来的块,这种移动发生的次数最多为 nBlo ^ 2。因为我是排好序的了嘛,相同块的是放在一起的。而这种移动发生一次最坏是O(n + n + q) = O(n)。(n、q是同阶的)
所以这样回答所有询问,时间复杂度就是O(nBlo ^ 2 * n)的。
由于B = n ^ (2 / 3),块的大小介于[B, 3 * B]之间。
则nBlo = O(n ^ (1 / 3))
则时间复杂度为O(n ^ (5 / 3))。

(如果不会dfs序的话请看我上一篇博文【BZOJ】3757: 苹果树

【BZOJ】3052: [wc2013]糖果公园的更多相关文章

  1. bzoj 3052: [wc2013]糖果公园 带修改莫队

    3052: [wc2013]糖果公园 Time Limit: 250 Sec  Memory Limit: 512 MBSubmit: 506  Solved: 189[Submit][Status] ...

  2. [BZOJ 3052] [wc2013] 糖果公园 【树上莫队】

    题目链接:BZOJ - 3052 题目分析 这道题就是非常经典的树上莫队了,并且是带修改的莫队. 带修改的莫队:将询问按照 左端点所在的块编号为第一关键字,右端点所在的块为第二关键字,位于第几次修改之 ...

  3. BZOJ.3052.[WC2013]糖果公园(树上莫队 带修改莫队)

    题目链接 BZOJ 当然哪都能交(都比在BZOJ交好),比如UOJ #58 //67376kb 27280ms //树上莫队+带修改莫队 模板题 #include <cmath> #inc ...

  4. BZOJ 3052: [wc2013]糖果公园 | 树上莫队

    题目: UOJ也能评测 题解 请看代码 #include<cstdio> #include<algorithm> #include<cstring> #includ ...

  5. bzoj 3052: [wc2013]糖果公园【树上带修改莫队】

    参考:http://blog.csdn.net/lych_cys/article/details/50845832 把树变成dfs括号序的形式,注意这个是不包含lca的(除非lca是两点中的一个) 然 ...

  6. 【BZOJ】3052: [wc2013]糖果公园 树分块+带修改莫队算法

    [题目]#58. [WC2013]糖果公园 [题意]给定n个点的树,m种糖果,每个点有糖果ci.给定n个数wi和m个数vi,第i颗糖果第j次品尝的价值是v(i)*w(j).q次询问一条链上每个点价值的 ...

  7. 洛谷 P4074 [WC2013]糖果公园 解题报告

    P4074 [WC2013]糖果公园 糖果公园 树上待修莫队 注意一个思想,dfn序处理链的方法,必须可以根据类似异或的东西,然后根据lca分两种情况讨论 注意细节 Code: #include &l ...

  8. AC日记——[WC2013]糖果公园 cogs 1817

    [WC2013]糖果公园 思路: 带修改树上莫队(模板): 来,上代码: #include <cmath> #include <cstdio> #include <cst ...

  9. COGS1817. [WC2013]糖果公园

    1817. [WC2013]糖果公园 ★★★☆   输入文件:park.in   输出文件:park.out   简单对比时间限制:8 s   内存限制:512 MB [题目描述] Candyland ...

随机推荐

  1. 如何把一个android工程作为另外一个android工程的lib库

    http://zhidao.baidu.com/question/626166873330652844 一个工程包含另一个工程.相当于一个jar包的引用.但又不是jar包反而像个package 在网上 ...

  2. 如何在java中使用别人提供的jar包进行导入,编译,运行

    一步一步往前走, 现在折分! JAR包即为上篇文章的东东. 测试JAVA文件. package com.security; import com.security.AESencrp; /** * 实现 ...

  3. 使用Mybatis-Generator自动生成Dao、Model、Mapping相关文件(转)

    Mybatis属于半自动ORM,在使用这个框架中,工作量最大的就是书写Mapping的映射文件,由于手动书写很容易出错,我们可以利用Mybatis-Generator来帮我们自动生成文件. 1.相关文 ...

  4. 使用JDBC的addBatch()方法提高效率

    在批量更新SQL操作的时候建议使用addBatch,这样效率是高些,数据量越大越能体现出来 Statement接口里有两个方法:void     addBatch(String sql)将给定的 SQ ...

  5. C# IP地址与整数之间的转换

    IP地址与整数之间的转换 1.IP地址转换为整数 原理:IP地址每段可以看成是8位无符号整数即0-255,把每段拆分成一个二进制形式组合起来,然后把这个二进制数转变成一个无符号的32位整数. 举例:一 ...

  6. Cube Processing Options

    在 Microsoft SQL Server Analysis Services 中处理对象时,您可以选择处理选项以控制每个对象的处理类型.  处理类型因对象而异,并基于自上次处理对象后对象所发生的更 ...

  7. phpcms v9 黄页实现手机访问手机版,电脑访问电脑版(双模板)

    第一步.模板文件夹下,yp复制一份,改名字 ypwap 第二步.修改phpcms/modules/yp/index.php和phpcms/modules/ypwap/index.php //判断客户端 ...

  8. 新浪微博的账号登录及api操作

    .sina.php <?php /** * PHP Library for weibo.com * * @author */ class sinaPHP { function __constru ...

  9. 手机web页面制作时的注意事项

    一.手机页面的标准头规范 字符编码使用utf-:指定页面手机内存缓存中的存储时间段 device-width:通知浏览器使用设备的宽度作为可视区的宽度 initial-scale - 初始的缩放比例 ...

  10. 获得H.264视频分辨率的方法

    转自:http://www.cnblogs.com/likwo/p/3531241.html 在使用ffmpeg解码播放TS流的时候(例如之前写过的UDP组播流),在连接时往往需要耗费大量时间.经过d ...