[知识点]Tarjan算法
// 此博文为迁移而来,写于2015年4月14日,不代表本人现在的观点与看法。原始地址:http://blog.sina.com.cn/s/blog_6022c4720102vxnx.html
UPDATE(20180809):对代码和描述进行大量修改。
UPDATE(20151104):新增Tarjan算法核心代码。

#include <cstdio> #define MAXN 1005
#define MAXM 10005 int o, n, m, u, v, h[MAXN], ins[MAXN], dfn[MAXN], low[MAXN], tim, st[MAXN << ], t, tot, top[MAXN], ans[MAXN][MAXN]; struct Edge {
int v, next;
} e[MAXM]; int min(int a, int b) {
return a < b ? a : b;
} void add(int u, int v) {
o++, e[o] = (Edge) {v, h[u]}, h[u] = o;
} void tarjan(int o) {
dfn[o] = low[o] = ++tim, ins[o] = , st[++t] = o;
for (int x = h[o]; x; x = e[x].next) {
int v = e[x].v;
if (!dfn[v]) tarjan(v), low[o] = min(low[o], low[v]);
else if (ins[v] && dfn[v] < low[o]) low[o] = dfn[v];
}
if (dfn[o] == low[o]) {
int x; tot++;
do {
x = st[t--];
ins[x] = ;
ans[tot][++top[tot]] = x;
} while (x != o);
}
} int main() {
freopen("tarjan.in", "r", stdin);
freopen("tarjan.out", "w", stdout);
scanf("%d %d", &n, &m);
for (int i = ; i <= m; i++) scanf("%d %d", &u, &v), add(u, v);
for (int i = ; i <= n; i++) if (!dfn[i]) tarjan(i);
for (int i = ; i <= tot; i++) {
for (int j = ; j <= top[i]; j++) printf("%d ", ans[i][j]);
printf("\n");
}
return ;
}

#include <cstdio> #define MAXN 500005
#define MAXM 500005 int n, m, u[MAXN], v[MAXN], tw[MAXN], ts, p, to, tb[MAXN], th[MAXN];
int w[MAXN], b[MAXN], s, h[MAXN], o, lik[MAXN];
int dfn[MAXN], low[MAXN], ins[MAXN], st[MAXN], tot, t, tim;
int f[MAXN], ans; struct Edge {
int v, next;
} e[MAXM], te[MAXM]; int min(int a, int b) {
return a < b ? a : b;
} int max(int a, int b) {
return a > b ? a : b;
} void add(int u, int v, int t) {
if (t) to++, te[to] = (Edge) {v, th[u]}, th[u] = to;
else o++, e[o] = (Edge) {v, h[u]}, h[u] = o;
} void init() {
scanf("%d %d", &n, &m);
for (int i = ; i <= m; i++) scanf("%d %d", &u[i], &v[i]), add(u[i], v[i], );
for (int i = ; i <= n; i++) scanf("%d", &tw[i]);
scanf("%d %d", &ts, &p);
for (int i = ; i <= p; i++) scanf("%d", &o), tb[o] = ;
} void tarjan(int o) {
dfn[o] = low[o] = ++tim, ins[o] = , st[++t] = o;
for (int x = th[o]; x; x = te[x].next) {
int v = te[x].v;
if (!dfn[v]) tarjan(v), low[o] = min(low[v], low[o]);
else if (ins[v] && dfn[v] < low[o]) low[o] = dfn[v];
}
if (dfn[o] == low[o]) {
int x; tot++;
do x = st[t--], ins[x] = , lik[x] = tot; while (x != o);
}
} void rebuild() {
for (int i = ; i <= m; i++) if (lik[u[i]] != lik[v[i]]) add(lik[u[i]], lik[v[i]], );
for (int i = ; i <= n; i++) {
w[lik[i]] += tw[i];
if (i == ts) s = lik[i];
if (tb[i]) b[lik[i]] = ;
}
f[s] = w[s];
} void DFS(int o) {
if (b[o]) ans = max(ans, f[o]);
for (int x = h[o]; x; x = e[x].next) {
int v = e[x].v;
if (f[o] + w[v] > f[v]) f[v] = f[o] + w[v], DFS(v);
}
} int main() {
init();
for (int i = ; i <= n; i++) if (!dfn[i]) tarjan(i);
rebuild();
DFS(s);
printf("%d", ans);
return ;
}
[知识点]Tarjan算法的更多相关文章
- tarjan算法 POJ3177-Redundant Paths
参考资料传送门 http://blog.csdn.net/lyy289065406/article/details/6762370 http://blog.csdn.net/lyy289065406/ ...
- 有向图强连通分量的Tarjan算法
有向图强连通分量的Tarjan算法 [有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G ...
- 点/边 双连通分量---Tarjan算法
运用Tarjan算法,求解图的点/边双连通分量. 1.点双连通分量[块] 割点可以存在多个块中,每个块包含当前节点u,分量以边的形式输出比较有意义. typedef struct{ //栈结点结构 保 ...
- 割点和桥---Tarjan算法
使用Tarjan算法求解图的割点和桥. 1.割点 主要的算法结构就是DFS,一个点是割点,当且仅当以下两种情况: (1)该节点是根节点,且有两棵以上的子树; (2)该节 ...
- Tarjan算法---强联通分量
1.基础知识 在有向图G,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G是一个强连通图.非强连通图有向图的极大强连通子 ...
- (转载)LCA问题的Tarjan算法
转载自:Click Here LCA问题(Lowest Common Ancestors,最近公共祖先问题),是指给定一棵有根树T,给出若干个查询LCA(u, v)(通常查询数量较大),每次求树T中两 ...
- 强连通分量的Tarjan算法
资料参考 Tarjan算法寻找有向图的强连通分量 基于强联通的tarjan算法详解 有向图强连通分量的Tarjan算法 处理SCC(强连通分量问题)的Tarjan算法 强连通分量的三种算法分析 Tar ...
- Tarjan 算法&模板
Tarjan 算法 一.算法简介 Tarjan 算法一种由Robert Tarjan提出的求解有向图强连通分量的算法,它能做到线性时间的复杂度. 我们定义: 如果两个顶点可以相互通达,则称两个顶点强连 ...
- 【小白入门向】tarjan算法+codevs1332上白泽慧音 题解报告
一.[前言]关于tarjan tarjan算法是由Robert Tarjan提出的求解有向图强连通分量的算法. 那么问题来了找蓝翔!(划掉)什么是强连通分量? 我们定义:如果两个顶点互相连通(即存在A ...
随机推荐
- 对Cookie和Session的深入理解
session对象 session对象用于存储特定的用户会话所需的信息 . Session对象的引入是为了弥补HTTP协议的不足.HTTP协议本身是无状态的,这与HTTP协议本来的目的是相符的,客户端 ...
- Android中Service 使用详解(LocalService + RemoteService)
Service 简介: Service分为本地服务(LocalService)和远程服务(RemoteService): 1.本地服务依附在主进程上而不是独立的进程,这样在一定程度上节约了资源,另外L ...
- 无废话ExtJs 入门教程六[按钮:Button]
无废话ExtJs 入门教程六[按钮:Button] extjs技术交流,欢迎加群(201926085) 继上一节内容,我们在表单里加了个两个按钮“提交”与重置.如下所示代码区的第68行位置, butt ...
- ytu 1064: 输入三个字符串,按由小到大的顺序输出(水题,字符串处理)
1064: 输入三个字符串,按由小到大的顺序输出 Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 471 Solved: 188[Submit][Sta ...
- HTML5应用之文件拖拽上传
使用HTML5的文件API,可以将操作系统中的文件拖放到浏览器的指定区域,实现文件上传到服务器.本文将结合实例讲解HTML5+jQuery+PHP实现拖拽上传图片的过程,来看下HTML5的魅力吧. H ...
- 三、spinner
今天 ,看的和学的都不多,就弄了一个spinner控件而已,下面就记录一下spinner 用法吧 基本上说,使用spinner 有三个步骤 一.在布局文件里面设置spinner 控件,这个不用再多说了 ...
- Open judge C16H:Magical Balls 快速幂+逆元
C16H:Magical Balls 总时间限制: 1000ms 内存限制: 262144kB 描述 Wenwen has a magical ball. When put on an infin ...
- MapKit的使用显示当前位置
1.添加MapKit.framework框架 ,在plist中添加字段,用于,获取用户当前位置设置 NSLocationAlwaysUsageDescription 2.代码 #import &quo ...
- 标签q
标记短的引用,默认是中文符号:双引号 <p>文字<q>段落中的引用</q>文字</p> 如果是在html里直接敲出引号,是这样的: <p>文 ...
- LoadRunner 一些快捷键
F4 Runtime Setting F5 运行 Ctrl Alt C 注释 Ctrl Alt U 取消注释 Tab 缩进 Shift Tab 取消缩进 Ctrl L 打开参数管理对 ...