BZOJ1407 [Noi2002]Savage
Description

Input
Output
仅包含一个数M,即最少可能的山洞数。输入数据保证有解,且M不大于10^6。
Sample Input
1 3 4
2 7 3
3 2 1
Sample Output
//该样例对应于题目描述中的例子。
HINT
Source
//It is made by jump~
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <ctime>
#include <vector>
#include <queue>
#include <map>
#include <set>
using namespace std;
typedef long long LL;
const int inf = (<<);
const int MAXN = +;
int n,minl,a,b,c;
int ini[MAXN],p[MAXN],L[MAXN];
//c[i]+p[i]*x=c[j]+p[j]*x-now*y ==> (c[i]-c[j])*x+now*y=c[j]-c[i] inline int getint()
{
int w=,q=; char c=getchar();
while((c<'' || c>'') && c!='-') c=getchar(); if(c=='-') q=,c=getchar();
while (c>='' && c<='') w=w*+c-'', c=getchar(); return q ? -w : w;
} inline int gcd(int x,int y){
if(y==) return x;
return gcd(y,x%y);
} inline void extend_gcd(int a,int b,int &x,int &y){
if(b==) {
x=;
y=;
return ;
}
extend_gcd(b,a%b,x,y);
int lin=x; x=y;
y=lin-(a/b)*y;
} inline void check(int now){//两两检查合法性
int gong,x,y;
for(int i=;i<n;i++)
for(int j=i+;j<=n;j++) {
a=(p[i]-p[j]); b=now; c=(ini[j]-ini[i]); gong=gcd(a,b);
if(c%gong!=) continue; //无解
a=a/gong; b=b/gong; c=c/gong;
extend_gcd(a,b,x,y);
if(b<) b=-b;
x=x*c; x%=b; x+=b; x+=b; x%=b;
if(x<=L[i] && x<=L[j]) return ;
}
printf("%d",now);
exit();
} inline void work(){
n=getint(); for(int i=;i<=n;i++) ini[i]=getint(),p[i]=getint(),L[i]=getint();
for(int i=;i<=n;i++) minl=max(minl,ini[i]);//至少是ini[i]的最大值
for(;;minl++) check(minl);
} int main()
{
work();
return ;
}
BZOJ1407 [Noi2002]Savage的更多相关文章
- BZOJ1407 NOI2002 Savage 【Exgcd】
BZOJ1407 NOI2002 Savage Description Input 第1行为一个整数N(1<=N<=15),即野人的数目. 第2行到第N+1每行为三个整数Ci, Pi, L ...
- BZOJ1407 [Noi2002]Savage 【扩展欧几里得】
题目链接 BZOJ1407 题解 枚举\(m\)用扩欧判即可 #include<algorithm> #include<iostream> #include<cstrin ...
- [BZOJ1407][NOI2002]Savage(扩展欧几里德)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1407 分析: m,n范围都不大,所以可以考虑枚举 先枚举m,然后判定某个m行不行 某个 ...
- BZOJ1407: [Noi2002]Savage exgcd
Description Input 第1行为一个整数N(1<=N<=15),即野人的数目. 第2行到第N+1每行为三个整数Ci, Pi, Li表示每个野人所住的初始洞穴编号,每年走过的洞穴 ...
- 【数学 exgcd】bzoj1407: [Noi2002]Savage
exgcd解不定方程时候$abs()$不能乱加 Description Input 第1行为一个整数N(1<=N<=15),即野人的数目. 第2行到第N+1每行为三个整数Ci, Pi, L ...
- bzoj1407 [Noi2002]Savage——扩展欧几里得
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1407 看到一定有解,而且小于10^6,所以可以枚举: 判断一个解是否可行,就两两判断野人 i ...
- BZOJ 1407: [Noi2002]Savage( 数论 )
枚举答案, 然后O(N^2)枚举野人去判他们是否会在有生之年存在同山洞. 具体做法就是: 设第x年相遇, 则 Ci+x*Pi=Cj+x*Pj (mod M), 然后解同余方程. 复杂度应该是O(ans ...
- [Noi2002]Savage
[Noi2002]Savage 数学题. 题解回去写(有个坑点) flag++ #include <cstdio> int n,m,c[25],p[29],l[29]; int exgcd ...
- [Noi2002]Savage 题解
[Noi2002]Savage 时间限制: 5 Sec 内存限制: 64 MB 题目描述 输入 第1行为一个整数N(1<=N<=15),即野人的数目. 第2行到第N+1每行为三个整数Ci ...
随机推荐
- jboss:跟踪所有sql语句及sql参数
默认情况下,hibernate/JPA 在server.log中记录的SQL语句,参数都是用?代替的,这样不太方便. 网上留传的p6spy在最新的jboss上(EAP 6.0+版本)貌似已经不起作用了 ...
- Spring IOC 源码浅析
控制反转(Inversion of Control,英文缩写为IoC)是一个重要的面向对象编程的法则来削减计算机程序的耦合问题,也是轻量级的Spring框架的核心. 控制反转一般分为两种类型,依赖注入 ...
- 从setTimeout谈JavaScript运行机制
从setTimeout说起 众所周知,JavaScript是单线程的编程,什么是单线程,就是说同一时间JavaScript只能执行一段代码,如果这段代码要执行很长时间,那么之后的代码只能尽情地等待它执 ...
- jQuery.uploadify-----文件上传带进度条,支持多文件上传的插件
借鉴别人总结的uploadify:基于jquery的文件上传插件,支持ajax无刷新上传,多个文件同时上传,上传进行进度显示,控制文件上传大小,删除已上传文件. uploadify有两个版本,一个用f ...
- sql 几点记录
1 With子句 1.1 学习目标 掌握with子句用法,并且了解with子句能够提高查询效率的原因. 1.2 With子句要点 with子句的返回结果存到用户的临时表 ...
- [CF#290 Div.1 C]Fox And Dinner(最大流)
题目:http://codeforces.com/contest/512/problem/C 题目大意:给你若干个数,让你分成k组,每组围成一个圆,使得相邻两个数和均为素数,且每组人数应>=3个 ...
- linux初级,连网
第一次写,今天刚好装上centos,然后就玩装一些软件,但要联网,所以琢磨了半天连网,下面总结下今天积累的一些知识点吧! 首先需要查看电脑有没有装驱动:ifconfig -a, 看有没有eh0(网卡) ...
- 东大OJ-麦森数
1064: 麦森数 时间限制: 1 Sec 内存限制: 128 MB 提交: 52 解决: 9 [提交][状态][讨论版] 题目描述 形如2P-1的素数称为麦森数,这时P一定也是个素数.但反过来不 ...
- Beta版本冲刺———第二天
会议照片: 项目燃尽图: 1.项目进展: 昨天的困难:分数排行榜的设计 今天解决的进度:完成了界面优化以及建立新的排行榜选项卡界面. 明天要做的事情:分数排行榜的功能设计 2.每个人每天做的事情 郭怡 ...
- JavaIO流文件的操作总结
IO流的分类 1.根据数据的流向: 输入流:用来读数据,如从外界设备读数据到内存中: 输出流:用来写数据,如从内存输出数据到外界存储设备: 2.根据数据流的格式: 字节流:一般用于声音或者秃瓢等二进制 ...