Cube的高级设置
分享来源地址:http://bigdata.51cto.com/art/201705/538648.htm
Cube的高级设置
随着维度数目的增加,Cuboid 的数量会爆炸式地增长。为了缓解 Cube 的构建压力,Apache Kylin 引入了一系列的高级设置,帮助用户筛选出真正需要的 Cuboid。这些高级设置包括聚合组(Aggregation Group)、联合维度(Joint Dimension)、层级维度(Hierachy Dimension)和必要维度(Mandatory Dimension)等。”
众所周知,Apache Kylin 的主要工作就是为源数据构建 N 个维度的 Cube,实现聚合的预计算。理论上而言,构建 N 个维度的 Cube 会生成 2N 个 Cuboid, 如图 1 所示,构建一个 4 个维度(A,B,C, D)的 Cube,需要生成 16 个Cuboid。

随着维度数目的增加 Cuboid 的数量会爆炸式地增长,不仅占用大量的存储空间还会延长 Cube 的构建时间。为了缓解 Cube 的构建压力,减少生成的 Cuboid 数目,Apache Kylin 引入了一系列的高级设置,帮助用户筛选出真正需要的 Cuboid。这些高级设置包括聚合组(Aggregation Group)、联合维度(Joint Dimension)、层级维度(Hierachy Dimension)和必要维度(Mandatory Dimension)等,本系列将深入讲解这些高级设置的含义及其适用的场景。
聚合组(Aggregation Group)
用户根据自己关注的维度组合,可以划分出自己关注的组合大类,这些大类在 Apache Kylin 里面被称为聚合组。例如图 1 中展示的 Cube,如果用户仅仅关注维度 AB 组合和维度 CD 组合,那么该 Cube 则可以被分化成两个聚合组,分别是聚合组 AB 和聚合组 CD。如图 2 所示,生成的 Cuboid 数目从 16 个缩减成了 8 个。

(图2)
用户关心的聚合组之间可能包含相同的维度,例如聚合组 ABC 和聚合组 BCD 都包含维度 B 和维度 C。这些聚合组之间会衍生出相同的 Cuboid,例如聚合组 ABC 会产生 Cuboid BC,聚合组 BCD 也会产生 Cuboid BC。这些 Cuboid不会被重复生成,一份 Cuboid 为这些聚合组所共有,如图 3 所示。

(图3)
有了聚合组用户就可以粗粒度地对 Cuboid 进行筛选,获取自己想要的维度组合。
聚合组应用实例
假设创建一个交易数据的 Cube,它包含了以下一些维度:顾客 ID buyer_id 交易日期 cal_dt、付款的方式 pay_type 和买家所在的城市 city。有时候,分析师需要通过分组聚合 city、cal_dt 和 pay_type 来获知不同消费方式在不同城市的应用情况;有时候,分析师需要通过聚合 city 、cal_dt 和 buyer_id,来查看顾客在不同城市的消费行为。在上述的实例中,推荐建立两个聚合组,包含的维度和方式如图 4 :

(图4)
聚合组 1: [cal_dt, city, pay_type]
聚合组 2: [cal_dt, city, buyer_id]
在不考虑其他干扰因素的情况下,这样的聚合组将节省不必要的 3 个 Cuboid: [pay_type, buyer_id]、[city, pay_type, buyer_id] 和 [cal_dt, pay_type, buyer_id] 等,节省了存储资源和构建的执行时间。
Case 1:
SELECT cal_dt, city, pay_type, count(*) FROM table GROUP BY cal_dt, city, pay_type 则将从 Cuboid [cal_dt, city, pay_type] 中获取数据。
Case2:
SELECT cal_dt, city, buy_id, count(*) FROM table GROUP BY cal_dt, city, buyer_id 则将从 Cuboid [cal_dt, city, pay_type] 中获取数据。
Case3 如果有一条不常用的查询:
SELECT pay_type, buyer_id, count(*) FROM table GROUP BY pay_type, buyer_id 则没有现成的完全匹配的 Cuboid。
此时,Apache Kylin 会通过在线计算的方式,从现有的 Cuboid 中计算出最终结果。
联合维度(Joint Dimension)
用户有时并不关心维度之间各种细节的组合方式,例如用户的查询语句中仅仅会出现 group by A, B, C,而不会出现 group by A, B 或者 group by C 等等这些细化的维度组合。这一类问题就是联合维度所解决的问题。例如将维度 A、B 和 C 定义为联合维度,Apache Kylin 就仅仅会构建 Cuboid ABC,而 Cuboid AB、BC、A 等等Cuboid 都不会被生成。最终的 Cube 结果如图5所示,Cuboid 数目从 16 减少到 4。

(图5)
联合维度应用实例
假设创建一个交易数据的Cube,它具有很多普通的维度,像是交易日期 cal_dt,交易的城市 city,顾客性别 sex_id 和支付类型 pay_type 等。分析师常用的分析方法为通过按照交易时间、交易地点和顾客性别来聚合,获取不同城市男女顾客间不同的消费偏好,例如同时聚合交易日期 cal_dt、交易的城市 city 和顾客性别 sex_id来分组。在上述的实例中,推荐在已有的聚合组中建立一组联合维度,包含的维度和组合方式如图6:

(图6)
聚合组:[cal_dt, city, sex_id,pay_type]
联合维度: [cal_dt, city, sex_id]
Case 1:
SELECT cal_dt, city, sex_id, count(*) FROM table GROUP BY cal_dt, city, sex_id 则它将从Cuboid [cal_dt, city, sex_id]中获取数据
Case2如果有一条不常用的查询:
SELECT cal_dt, city, count(*) FROM table GROUP BY cal_dt, city 则没有现成的完全匹配的 Cuboid,Apache Kylin 会通过在线计算的方式,从现有的 Cuboid 中计算出最终结果。
层级维度(Hierarchy Dimension)
用户选择的维度中常常会出现具有层级关系的维度。例如对于国家(country)、省份(province)和城市(city)这三个维度,从上而下来说国家/省份/城市之间分别是一对多的关系。也就是说,用户对于这三个维度的查询可以归类为以下三类:
- group by country
- group by country, province(等同于group by province)
- group by country, province, city(等同于 group by country, city 或者group by city)
以图7所示的 Cube 为例,假设维度 A 代表国家,维度 B 代表省份,维度 C 代表城市,那么ABC 三个维度可以被设置为层级维度,生成的Cube 如图7所示。

(图7)
例如,Cuboid [A,C,D]=Cuboid[A, B, C, D],Cuboid[B, D]=Cuboid[A, B, D],因而 Cuboid[A, C, D] 和 Cuboid[B, D] 就不必重复存储。
图8展示了 Kylin 按照前文的方法将冗余的Cuboid 剪枝从而形成图 2 的 Cube 结构,Cuboid 数目从 16 减小到 8。

(图8)
层级维度应用实例
假设一个交易数据的 Cube,它具有很多普通的维度,像是交易的城市 city,交易的省 province,交易的国家 country, 和支付类型 pay_type等。分析师可以通过按照交易城市、交易省份、交易国家和支付类型来聚合,获取不同层级的地理位置消费者的支付偏好。在上述的实例中,建议在已有的聚合组中建立一组层级维度(国家country/省province/城市city),包含的维度和组合方式如图9:

(图9)
聚合组:[country, province, city,pay_type]
层级维度: [country, province, city]
Case 1 当分析师想从城市维度获取消费偏好时:
SELECT city, pay_type, count(*) FROM table GROUP BY city, pay_type 则它将从 Cuboid [country, province, city, pay_type] 中获取数据。
Case 2 当分析师想从省级维度获取消费偏好时:
SELECT province, pay_type, count(*) FROM table GROUP BY province, pay_type 则它将从Cuboid [country, province, pay_type] 中获取数据。
Case 3 当分析师想从国家维度获取消费偏好时:
SELECT country, pay_type, count(*) FROM table GROUP BY country, pay_type 则它将从Cuboid [country, pay_type] 中获取数据。
Case 4 如果分析师想获取不同粒度地理维度的聚合结果时:
无一例外都可以由图 3 中的 cuboid 提供数据 。
例如,SELECT country, city, count(*) FROM table GROUP BY country, city 则它将从 Cuboid [country, province, city] 中获取数据。
必要维度 (Mandatory Dimension)
用户有时会对某一个或几个维度特别感兴趣,所有的查询请求中都存在group by这个维度,那么这个维度就被称为必要维度,只有包含此维度的Cuboid会被生成(如图10)。

(图10)
以图 1中的Cube为例,假设维度A是必要维度,那么生成的Cube则如图11所示,维度数目从16变为9。

(图11)
必要维度应用实例
假设一个交易数据的Cube,它具有很多普通的维度,像是交易时间order_dt,交易的地点location,交易的商品product和支付类型pay_type等。其中,交易时间就是一个被高频作为分组条件(group by)的维度。 如果将交易时间order_dt设置为必要维度,包含的维度和组合方式如图12:

(图12)
系列总结
根据本系列的原理介绍,在Kylin的高级设置中,用户可以根据查询需求对Cube构建预计算的结果进行优化(剪枝),从而减少占用的存储空间。 而优化得当的Cube可以在占用尽量少的存储空间的同时提供极强的查询性能。
Cube的高级设置的更多相关文章
- Navicat(连接) -1高级设置
高级设置 设置位置当创建一个新的连接,Navicat 将在设置位置创建一个子文件夹.大多数文件都保存在该子文件夹: Navicat 对象 服务器类型 扩展名 查询 全部 .sql 导出查询结果设置文件 ...
- Netsharp快速入门(之17) Netsharp基础功能(参照高级设置)
5.2 参照高级设置 1. 以往来字段为例,打开平台工具-界面管理-列表管理,找到往来单位的资源节点,记下列表项目中的名称 2.记下往来单位部件工作区的id 3. 打开平台工具-界面管理-参照 ...
- 一个完整的Installshield安装程序实例—艾泽拉斯之海洋女神出品(四) --高级设置二
原文:一个完整的Installshield安装程序实例-艾泽拉斯之海洋女神出品(四) --高级设置二 上一篇:一个完整的安装程序实例—艾泽拉斯之海洋女神出品(三) --高级设置一4. 根据用户选择的组 ...
- 高级设置电脑系统windows7防火墙出错代码0×6D9原因与解决技巧
高级设置windows防火墙能够更好的保护电脑系统安全,在电脑系统windows7设置过程中难免会遇到某些问题,有用户在安装MRGT后想要打开SNMP的161端口,但在打开高级安全windows防火墙 ...
- cdnbest获取,删除,增加,修改域名列表,高级设置api示例
<?php $uid = 28; $vhost = 'asdfw'; $token = getToken($uid, $vhost); print_r($token); //获取token fu ...
- vsftp 虚拟用户高级设置(转载)
发布:xiaokk 来源:net [大 中 小] vsftp 虚拟用户高级设置 本文转自:http://www.jbxue.com/article/1724.html 1.安装所需软件包 ...
- 手把手教你搭饥荒专用服务器(三)—MOD及其他高级设置
友情链接: 手把手教你搭饥荒专用服务器(一)-服务器准备工作 手把手教你搭饥荒专用服务器(二)-环境配置及基本使用 手把手教你搭饥荒专用服务器(三)-MOD及其他高级设置 手把手教你搭饥荒专用服务器( ...
- PocketBeagle 初高级设置
前言 原创文章,转载引用务必注明链接,水平有限,如有疏漏,欢迎指正.本文使用markdown标记语言写成,为获得最好的阅读体验,请访问我的博客原文. 1. PocketBeagle Summary ...
- Protel99se轻松入门:特殊技巧和高级设置(一)
这里简单介绍一下自动布线和手动布线方面的设置问题 1.如何进入PCB的这个布线规则选项: 2.电气安全距离的设置 3.导线宽度的设置 4.学会了设置图层就可以做单面板以及多层板,而不只是双面板 5.布 ...
随机推荐
- apollo在liunx环境实战(三)
1. apollo在liunx环境实战(三) 1.1. 准备 下载apollo源码 https://github.com/ctripcorp/apollo 1.2. 创建数据库 在自己的liunx环境 ...
- python3+ selenium3开发环境搭建-手把手教你安装python(详细)
环境搭建 基于python3和selenium3做自动化测试,俗话说:工欲善其事必先利其器:没有金刚钻就不揽那瓷器活,磨刀不误砍柴工,因此你必须会搭建基本的开发环境,掌握python基本的语法和一个I ...
- 【转】msfvenom使用指南
msfvenom命令行选项如下: Options: -p, --payload <payload> 指定需要使用的payload(攻击荷载).如果需要使用自定义的payload,请使用'- ...
- asp.net core 系列 5 MVC框架路由(上)
一. 概述 介绍asp.net core路由时,我初步想了下,分几篇来说明. 路由的知识点很多,参考了官方文档提取出一些重要的知识点来说. 在ASP.NET Core中是使用路由中间件来匹配传 ...
- python入门学习记录(win7+python3.6)
1. pip freeze 可以查看安装的模块信息 2. 查看某个模块是否已经安装了 conda(pip) search <moduleName>.图一显示为未安装,图二显示为已经安装
- SVN客户端安装与使用
转载请注明原文地址:http://www.cnblogs.com/ygj0930/p/6623148.html 一:SVN客户端下载与安装 下载网址:https://tortoisesvn.net/ ...
- Eclipse导入别人的项目报错:Unable to load annotation processor factory 'xxxxx.jar' for project
使用eclipse导入别人的项目时候,报错Unable to load annotation processor factory 'xxxxx.jar' for project. 解决方案 1.项目右 ...
- Lucene 01 - 初步认识全文检索和Lucene
目录 1 搜索简介 1.1 搜索实现方案 1.2 数据查询方法 1.2.1 顺序扫描法 1.2.2 倒排索引法(反向索引) 1.3 搜索技术应用场景 2 Lucene简介 2.1 Lucene是什么 ...
- Linux设备驱动之IIO子系统——IIO框架及IIO数据结构
由于需要对ADC进行驱动设计,因此学习了一下Linux驱动的IIO子系统.本文翻译自<Linux Device Drivers Development >--John Madieu,本人水 ...
- 以实例说明微服务拆分(以SpringCloud+Gradle)
前言 之前,我都是说了很多的关于微服务的概念,说到底,很多人看了之后会认为没有什么意思,因为没有实际的东西说明,即使每个概念都明白了,也很难赋之实践.所以这次,我来用一个实际的例子去说明,在实际的项目 ...