[]TLD code run
opencv3.3.1
https://github.com/alantrrs/OpenTLD
https://github.com/arthurv/OpenTLD
problem
opencv3.0以及后续版本弃用legacy模块了;
solution
write cv::PatchGenerator module by yourself.
patchgenerator.h in folder include
//#pragma once
#ifndef PATCH_GENERATOR_H
#define PATCH_GENERATOR_H
#include "opencv2/opencv.hpp" namespace cv{
class CV_EXPORTS PatchGenerator
//class PatchGenerator
{
public:
PatchGenerator(); PatchGenerator(double _backgroundMin, double _backgroundMax,
double _noiseRange, bool _randomBlur=true,
double _lambdaMin=0.6, double _lambdaMax=1.5,
double _thetaMin=-CV_PI, double _thetaMax=CV_PI,
double _phiMin=-CV_PI, double _phiMax=CV_PI ); void operator()(const Mat& image, Point2f pt, Mat& patch, Size patchSize, RNG& rng) const; void operator()(const Mat& image, const Mat& transform, Mat& patch,
Size patchSize, RNG& rng) const; void warpWholeImage(const Mat& image, Mat& matT, Mat& buf,
CV_OUT Mat& warped, int border, RNG& rng) const; void generateRandomTransform(Point2f srcCenter, Point2f dstCenter,
CV_OUT Mat& transform, RNG& rng,
bool inverse=false) const; void setAffineParam(double lambda, double theta, double phi); double backgroundMin, backgroundMax;
double noiseRange;
bool randomBlur;
double lambdaMin, lambdaMax;
double thetaMin, thetaMax;
double phiMin, phiMax;
}; };
#endif
patchgenerator.cpp in folder src
#include "opencv2/opencv.hpp"
#include "patchgenerator.h"
namespace cv
{ const int progressBarSize = ; //////////////////////////// Patch Generator ////////////////////////////////// static const double DEFAULT_BACKGROUND_MIN = ;
static const double DEFAULT_BACKGROUND_MAX = ;
static const double DEFAULT_NOISE_RANGE = ;
static const double DEFAULT_LAMBDA_MIN = 0.6;
static const double DEFAULT_LAMBDA_MAX = 1.5;
static const double DEFAULT_THETA_MIN = -CV_PI;
static const double DEFAULT_THETA_MAX = CV_PI;
static const double DEFAULT_PHI_MIN = -CV_PI;
static const double DEFAULT_PHI_MAX = CV_PI; PatchGenerator::PatchGenerator()
: backgroundMin(DEFAULT_BACKGROUND_MIN), backgroundMax(DEFAULT_BACKGROUND_MAX),
noiseRange(DEFAULT_NOISE_RANGE), randomBlur(true), lambdaMin(DEFAULT_LAMBDA_MIN),
lambdaMax(DEFAULT_LAMBDA_MAX), thetaMin(DEFAULT_THETA_MIN),
thetaMax(DEFAULT_THETA_MAX), phiMin(DEFAULT_PHI_MIN),
phiMax(DEFAULT_PHI_MAX)
{
} PatchGenerator::PatchGenerator(double _backgroundMin, double _backgroundMax,
double _noiseRange, bool _randomBlur,
double _lambdaMin, double _lambdaMax,
double _thetaMin, double _thetaMax,
double _phiMin, double _phiMax )
: backgroundMin(_backgroundMin), backgroundMax(_backgroundMax),
noiseRange(_noiseRange), randomBlur(_randomBlur),
lambdaMin(_lambdaMin), lambdaMax(_lambdaMax),
thetaMin(_thetaMin), thetaMax(_thetaMax),
phiMin(_phiMin), phiMax(_phiMax)
{
} void PatchGenerator::generateRandomTransform(Point2f srcCenter, Point2f dstCenter,
Mat& transform, RNG& rng, bool inverse) const
{
double lambda1 = rng.uniform(lambdaMin, lambdaMax);
double lambda2 = rng.uniform(lambdaMin, lambdaMax);
double theta = rng.uniform(thetaMin, thetaMax);
double phi = rng.uniform(phiMin, phiMax); // Calculate random parameterized affine transformation A,
// A = T(patch center) * R(theta) * R(phi)' *
// S(lambda1, lambda2) * R(phi) * T(-pt)
double st = sin(theta);
double ct = cos(theta);
double sp = sin(phi);
double cp = cos(phi);
double c2p = cp*cp;
double s2p = sp*sp; double A = lambda1*c2p + lambda2*s2p;
double B = (lambda2 - lambda1)*sp*cp;
double C = lambda1*s2p + lambda2*c2p; double Ax_plus_By = A*srcCenter.x + B*srcCenter.y;
double Bx_plus_Cy = B*srcCenter.x + C*srcCenter.y; transform.create(, , CV_64F);
Mat_<double>& T = (Mat_<double>&)transform;
T(,) = A*ct - B*st;
T(,) = B*ct - C*st;
T(,) = -ct*Ax_plus_By + st*Bx_plus_Cy + dstCenter.x;
T(,) = A*st + B*ct;
T(,) = B*st + C*ct;
T(,) = -st*Ax_plus_By - ct*Bx_plus_Cy + dstCenter.y; if( inverse ) invertAffineTransform(T, T);
} void PatchGenerator::operator ()(const Mat& image, Point2f pt, Mat& patch, Size patchSize, RNG& rng) const
{
double buffer[];
Mat_<double> T(, , buffer); generateRandomTransform(pt, Point2f((patchSize.width-)*0.5f, (patchSize.height-)*0.5f), T, rng);
(*this)(image, T, patch, patchSize, rng);
} void PatchGenerator::operator ()(const Mat& image, const Mat& T,
Mat& patch, Size patchSize, RNG& rng) const
{
patch.create( patchSize, image.type() );
if( backgroundMin != backgroundMax )
{
rng.fill(patch, RNG::UNIFORM, Scalar::all(backgroundMin), Scalar::all(backgroundMax));
warpAffine(image, patch, T, patchSize, INTER_LINEAR, BORDER_TRANSPARENT);
}
else
warpAffine(image, patch, T, patchSize, INTER_LINEAR, BORDER_CONSTANT, Scalar::all(backgroundMin)); int ksize = randomBlur ? (unsigned)rng % - : ;
if( ksize > )
{
ksize = ksize* + ;
GaussianBlur(patch, patch, Size(ksize, ksize), , );
} if( noiseRange > )
{
AutoBuffer<uchar> _noiseBuf( patchSize.width*patchSize.height*image.elemSize() );
Mat noise(patchSize, image.type(), (uchar*)_noiseBuf);
int delta = image.depth() == CV_8U ? : image.depth() == CV_16U ? : ;
rng.fill(noise, RNG::NORMAL, Scalar::all(delta), Scalar::all(noiseRange));
if( backgroundMin != backgroundMax ) addWeighted(patch, , noise, , -delta, patch);
else
{
for( int i = ; i <patchSize.height; i++ )
{
uchar* prow = patch.ptr<uchar>(i);
const uchar* nrow = noise.ptr<uchar>(i);
for( int j = ; j <patchSize.width; j++ )
if( prow[j] != backgroundMin )
prow[j] = saturate_cast<uchar>(prow[j] + nrow[j] - delta);
}
}
}
} void PatchGenerator::warpWholeImage(const Mat& image, Mat& matT, Mat& buf,
Mat& warped, int border, RNG& rng) const
{
Mat_<double> T = matT;
Rect roi(INT_MAX, INT_MAX, INT_MIN, INT_MIN); for( int k = ; k <; k++ )
{
Point2f pt0, pt1;
pt0.x = (float)(k == || k == ? : image.cols);
pt0.y = (float)(k < ? : image.rows);
pt1.x = (float)(T(,)*pt0.x + T(,)*pt0.y + T(,));
pt1.y = (float)(T(,)*pt0.x + T(,)*pt0.y + T(,)); roi.x = std::min(roi.x, cvFloor(pt1.x));
roi.y = std::min(roi.y, cvFloor(pt1.y));
roi.width = std::max(roi.width, cvCeil(pt1.x));
roi.height = std::max(roi.height, cvCeil(pt1.y));
} roi.width -= roi.x - ;
roi.height -= roi.y - ;
int dx = border - roi.x;
int dy = border - roi.y; if( (roi.width+border*)*(roi.height+border*) > buf.cols )
buf.create(, (roi.width+border*)*(roi.height+border*), image.type()); warped = Mat(roi.height + border*, roi.width + border*,
image.type(), buf.data); T(,) += dx;
T(,) += dy;
(*this)(image, T, warped, warped.size(), rng); if( T.data != matT.data ) T.convertTo(matT, matT.type());
} // Params are assumed to be symmetrical: lambda w.r.t. 1, theta and phi w.r.t. 0
void PatchGenerator::setAffineParam(double lambda, double theta, double phi)
{
lambdaMin = . - lambda;
lambdaMax = . + lambda;
thetaMin = -theta;
thetaMax = theta;
phiMin = -phi;
phiMax = phi;
}
};
CMakeLists.txt
#Set minimum version requered
cmake_minimum_required(VERSION 2.4.)
#just to avoid the warning
if(COMMAND cmake_policy)
cmake_policy(SET CMP0003 NEW)
endif(COMMAND cmake_policy)
#set project name
project(TLD)
#Append path to the module path
list(APPEND CMAKE_MODULE_PATH ${PROJECT_SOURCE_DIR})
#OpenCV
find_package(OpenCV 3.3. REQUIRED)
#set the default path for built executables to the "bin" directory
set(EXECUTABLE_OUTPUT_PATH ${PROJECT_SOURCE_DIR}/../bin)
#set the default path for built libraries to the "lib" directory
set(LIBRARY_OUTPUT_PATH ${PROJECT_SOURCE_DIR}/../lib)
#set the include directories
include_directories (${PROJECT_SOURCE_DIR}/../include ${OpenCV_INCLUDE_DIRS})
#libraries
add_library(tld_utils tld_utils.cpp)
add_library(LKTracker LKTracker.cpp)
add_library(ferNN FerNNClassifier.cpp)
add_library(tld TLD.cpp patchgenerator.cpp)
#add_library(tld TLD.cpp)
#executables
add_executable(run_tld run_tld.cpp)
#link the libraries
target_link_libraries(run_tld tld LKTracker ferNN tld_utils ${OpenCV_LIBS})
#set optimization level
set(CMAKE_BUILD_TYPE Release)
run
cd OpenTLD
mkdir build
cd build
cmake ../src/
make
cd ../bin/
%To run from camera
./run_tld -p ../parameters.yml -tl
%To run from file
./run_tld -p ../parameters.yml -s ../datasets/06_car/car.mpg -tl
%To init bounding box from file
./run_tld -p ../parameters.yml -s ../datasets/06_car/car.mpg -b ../datasets/06_car/init.txt -tl
%To train only in the firs frame (no tracking, no learning)
./run_tld -p ../parameters.yml -s ../datasets/06_car/car.mpg -b ../datasets/06_car/init.txt
%To test the final detector (Repeat the video, first time learns, second time detects)
./run_tld -p ../parameters.yml -s ../datasets/06_car/car.mpg -b ../datasets/06_car/init.txt -tl -r
choose a bbox as one tracking object.
evaluation
=====================================
Evaluation
=====================================
The output of the program is a file called bounding_boxes.txt which contains all the detections made through the video. This file should be compared with the ground truth file to evaluate the performance of the algorithm. This is done using a python script:
python ../datasets/evaluate_vis.py ../datasets/06_car/car.mpg bounding_boxes.txt ../datasets/06_car/gt.txt
result
$python2 ../datasets/evaluate_vis.py ../datasets/06_car/car.mpg bounding_boxes.txt ../datasets/06_car/gt.txt
../datasets/evaluate_vis.py:: VisibleDeprecationWarning: using a non-integer number instead of an integer will result in an error in the future
frame[y1:y2,x1:x2]=(,,)
detections = 916.000000
true detections = 860.000000
correct detections = 850.000000
precision=0.927948
recall=0.988372
f-measure= 0.957207
re:
1. https://github.com/alantrrs/OpenTLD
2. https://github.com/arthurv/OpenTLD
3. http://blog.sina.com.cn/s/blog_b30296270102wbbw.html;
end
[]TLD code run的更多相关文章
- Thread的run()与start()的区别
Java的线程是通过java.lang.Thread类来实现的.VM启动时会有一个由主方法所定义的线程.可以通过创建Thread的实例来创建新的线程.每个线程都是通过某个特定Thread对象所对应的方 ...
- Thread’s start method and run method
工作中用到了Thread,一开始用错了,仔细研究了一下,稍作整理. 前言,今天写代码居然这样写的 new Thread() { @Override public void run() { System ...
- OPENGL: WHY IS YOUR CODE PRODUCING A BLACK WINDOW?
Introduction One of the most common problems for novice, and sometimes experienced, OpenGL program ...
- Visual Studio Code搭建NodeJs的开发环境
一.Visual Studio Code搭建NodeJs的开发环境 1.下载安装NodeJs并配置环境变量 可以参考:NodeJs的安装和环境变量配置 2.下载安装 VS Code编辑器 可以参考:V ...
- 基于Visual Studio Code搭建Vue开发环境
安装node.js最新版 这里安装的是8.11.4版 image.png 更新npm至最新版 安装node.js后, npm默认版本为: 6.1.0 image.png 使用npm insta ...
- node.js运行配置(vs code非控制台输出)
node.js运行配置(vs code非控制台输出) node 配置 简化 vs code 是非常强大的编译器,皆因它有有各种各样好用的插件. 在没有安装code runner插件之前,想要执行n ...
- 线程中start和run方法的区别
先说java中实现多线程常用的两种方式: 1:继承Thread类,并重写run()方法 2:实现Runnable接口,实现run方法实际上Thread类也是实现了Runnable接口 [Jav ...
- 多线程爬坑之路-Thread和Runable源码解析
多线程:(百度百科借一波定义) 多线程(英语:multithreading),是指从软件或者硬件上实现多个线程并发执行的技术.具有多线程能力的计算机因有硬件支持而能够在同一时间执行多于一个线程,进而提 ...
- XSS 前端防火墙 —— 无懈可击的钩子
昨天尝试了一系列的可疑模块拦截试验,尽管最终的方案还存在着一些兼容性问题,但大体思路已经明确了: 静态模块:使用 MutationObserver 扫描. 动态模块:通过 API 钩子来拦截路径属性. ...
随机推荐
- docker 安装redis , 让宿主机可以访问
1, docker 拉去最新版本的redis docker pull redis #后面可以带上tag号, 默认拉取最新版本 2, docker安装redis container 安装之前去定义我们的 ...
- JavaScript 进制转换
//十进制转其他 var x=111; alert(x.toString(8)); alert(x.toString(16)); //其他转十进制 var x='112'; alert(parseIn ...
- 给listview加动画,让动画执行结束后再刷新
问题:当给listview的条目加动画时,例如添加一个条目或者移除一个条目,动画效果会和添加删除条目的逻辑同时进行,因为动画并不是阻塞式的,这样会造成动画还没有结束,条目已经添加或者移除,从而动画作用 ...
- 开源HUSTOJ
hustoj -- 请一定认真看完本页再动手安装,以免无谓的折腾!====== 根据你选择的发行版不同,从下面三个脚本里选一个来用. <b>不要相信百度来的长篇大论的所谓教程,那些都是好几 ...
- R语言求根
求根是数值计算的一个基本问题,一般采用的都是迭代算法求解,主要有不动点迭代法.牛顿-拉富生算法.割线法和二分法. 不动点迭代法 所谓的不动点是指x=f(x)的那些点,而所谓的不懂点迭代法是指将原方程化 ...
- 逐帧动画 两种实现方式 css和js
第一种: css部分: <style> #foxtail{ background: url(../img/foxtail.png) 0 0 no-repeat; width: 156px; ...
- selemiun 自动化测试登录验证码处理
selemiun 自动化测试登录验证码处理 一.软件及插件的安装 1.火狐浏览器版本(55.0(x64 zh-CN):https://www.cnblogs.com/sandysun/p/783811 ...
- (2018 Multi-University Training Contest 3)Problem D. Euler Function
//题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6322 //题目大意:给定 k,求第 k 小的数 n,满足 φ(n) 是合数.显然 φ(1) = 1 ...
- 1.5 select编写
1.with:用于指定临时命名的结果 2.select A from B 在B中查看A 3.into 插入语句 例如:select A.B into 表1 from 表2 4.where 指定搜 ...
- C#中委托的同步和异步有什么区别
通过定义委托,来实现同步和异步,委托通过Action和Func来实现,记录学习委托的同步和异步的过程 委托的同步方法 委托的Invoke方法用来进行同步调用. static void Main(str ...