opencv3.3.1

https://github.com/alantrrs/OpenTLD

https://github.com/arthurv/OpenTLD

problem

opencv3.0以及后续版本弃用legacy模块了;

solution

write cv::PatchGenerator module by yourself.

patchgenerator.h in folder include

//#pragma once
#ifndef PATCH_GENERATOR_H
#define PATCH_GENERATOR_H
#include "opencv2/opencv.hpp" namespace cv{
class CV_EXPORTS PatchGenerator
//class PatchGenerator
{
public:
PatchGenerator(); PatchGenerator(double _backgroundMin, double _backgroundMax,
double _noiseRange, bool _randomBlur=true,
double _lambdaMin=0.6, double _lambdaMax=1.5,
double _thetaMin=-CV_PI, double _thetaMax=CV_PI,
double _phiMin=-CV_PI, double _phiMax=CV_PI ); void operator()(const Mat& image, Point2f pt, Mat& patch, Size patchSize, RNG& rng) const; void operator()(const Mat& image, const Mat& transform, Mat& patch,
Size patchSize, RNG& rng) const; void warpWholeImage(const Mat& image, Mat& matT, Mat& buf,
CV_OUT Mat& warped, int border, RNG& rng) const; void generateRandomTransform(Point2f srcCenter, Point2f dstCenter,
CV_OUT Mat& transform, RNG& rng,
bool inverse=false) const; void setAffineParam(double lambda, double theta, double phi); double backgroundMin, backgroundMax;
double noiseRange;
bool randomBlur;
double lambdaMin, lambdaMax;
double thetaMin, thetaMax;
double phiMin, phiMax;
}; };
#endif

patchgenerator.cpp in folder src

#include "opencv2/opencv.hpp"
#include "patchgenerator.h"
namespace cv
{ const int progressBarSize = ; //////////////////////////// Patch Generator ////////////////////////////////// static const double DEFAULT_BACKGROUND_MIN = ;
static const double DEFAULT_BACKGROUND_MAX = ;
static const double DEFAULT_NOISE_RANGE = ;
static const double DEFAULT_LAMBDA_MIN = 0.6;
static const double DEFAULT_LAMBDA_MAX = 1.5;
static const double DEFAULT_THETA_MIN = -CV_PI;
static const double DEFAULT_THETA_MAX = CV_PI;
static const double DEFAULT_PHI_MIN = -CV_PI;
static const double DEFAULT_PHI_MAX = CV_PI; PatchGenerator::PatchGenerator()
: backgroundMin(DEFAULT_BACKGROUND_MIN), backgroundMax(DEFAULT_BACKGROUND_MAX),
noiseRange(DEFAULT_NOISE_RANGE), randomBlur(true), lambdaMin(DEFAULT_LAMBDA_MIN),
lambdaMax(DEFAULT_LAMBDA_MAX), thetaMin(DEFAULT_THETA_MIN),
thetaMax(DEFAULT_THETA_MAX), phiMin(DEFAULT_PHI_MIN),
phiMax(DEFAULT_PHI_MAX)
{
} PatchGenerator::PatchGenerator(double _backgroundMin, double _backgroundMax,
double _noiseRange, bool _randomBlur,
double _lambdaMin, double _lambdaMax,
double _thetaMin, double _thetaMax,
double _phiMin, double _phiMax )
: backgroundMin(_backgroundMin), backgroundMax(_backgroundMax),
noiseRange(_noiseRange), randomBlur(_randomBlur),
lambdaMin(_lambdaMin), lambdaMax(_lambdaMax),
thetaMin(_thetaMin), thetaMax(_thetaMax),
phiMin(_phiMin), phiMax(_phiMax)
{
} void PatchGenerator::generateRandomTransform(Point2f srcCenter, Point2f dstCenter,
Mat& transform, RNG& rng, bool inverse) const
{
double lambda1 = rng.uniform(lambdaMin, lambdaMax);
double lambda2 = rng.uniform(lambdaMin, lambdaMax);
double theta = rng.uniform(thetaMin, thetaMax);
double phi = rng.uniform(phiMin, phiMax); // Calculate random parameterized affine transformation A,
// A = T(patch center) * R(theta) * R(phi)' *
// S(lambda1, lambda2) * R(phi) * T(-pt)
double st = sin(theta);
double ct = cos(theta);
double sp = sin(phi);
double cp = cos(phi);
double c2p = cp*cp;
double s2p = sp*sp; double A = lambda1*c2p + lambda2*s2p;
double B = (lambda2 - lambda1)*sp*cp;
double C = lambda1*s2p + lambda2*c2p; double Ax_plus_By = A*srcCenter.x + B*srcCenter.y;
double Bx_plus_Cy = B*srcCenter.x + C*srcCenter.y; transform.create(, , CV_64F);
Mat_<double>& T = (Mat_<double>&)transform;
T(,) = A*ct - B*st;
T(,) = B*ct - C*st;
T(,) = -ct*Ax_plus_By + st*Bx_plus_Cy + dstCenter.x;
T(,) = A*st + B*ct;
T(,) = B*st + C*ct;
T(,) = -st*Ax_plus_By - ct*Bx_plus_Cy + dstCenter.y; if( inverse ) invertAffineTransform(T, T);
} void PatchGenerator::operator ()(const Mat& image, Point2f pt, Mat& patch, Size patchSize, RNG& rng) const
{
double buffer[];
Mat_<double> T(, , buffer); generateRandomTransform(pt, Point2f((patchSize.width-)*0.5f, (patchSize.height-)*0.5f), T, rng);
(*this)(image, T, patch, patchSize, rng);
} void PatchGenerator::operator ()(const Mat& image, const Mat& T,
Mat& patch, Size patchSize, RNG& rng) const
{
patch.create( patchSize, image.type() );
if( backgroundMin != backgroundMax )
{
rng.fill(patch, RNG::UNIFORM, Scalar::all(backgroundMin), Scalar::all(backgroundMax));
warpAffine(image, patch, T, patchSize, INTER_LINEAR, BORDER_TRANSPARENT);
}
else
warpAffine(image, patch, T, patchSize, INTER_LINEAR, BORDER_CONSTANT, Scalar::all(backgroundMin)); int ksize = randomBlur ? (unsigned)rng % - : ;
if( ksize > )
{
ksize = ksize* + ;
GaussianBlur(patch, patch, Size(ksize, ksize), , );
} if( noiseRange > )
{
AutoBuffer<uchar> _noiseBuf( patchSize.width*patchSize.height*image.elemSize() );
Mat noise(patchSize, image.type(), (uchar*)_noiseBuf);
int delta = image.depth() == CV_8U ? : image.depth() == CV_16U ? : ;
rng.fill(noise, RNG::NORMAL, Scalar::all(delta), Scalar::all(noiseRange));
if( backgroundMin != backgroundMax ) addWeighted(patch, , noise, , -delta, patch);
else
{
for( int i = ; i <patchSize.height; i++ )
{
uchar* prow = patch.ptr<uchar>(i);
const uchar* nrow = noise.ptr<uchar>(i);
for( int j = ; j <patchSize.width; j++ )
if( prow[j] != backgroundMin )
prow[j] = saturate_cast<uchar>(prow[j] + nrow[j] - delta);
}
}
}
} void PatchGenerator::warpWholeImage(const Mat& image, Mat& matT, Mat& buf,
Mat& warped, int border, RNG& rng) const
{
Mat_<double> T = matT;
Rect roi(INT_MAX, INT_MAX, INT_MIN, INT_MIN); for( int k = ; k <; k++ )
{
Point2f pt0, pt1;
pt0.x = (float)(k == || k == ? : image.cols);
pt0.y = (float)(k < ? : image.rows);
pt1.x = (float)(T(,)*pt0.x + T(,)*pt0.y + T(,));
pt1.y = (float)(T(,)*pt0.x + T(,)*pt0.y + T(,)); roi.x = std::min(roi.x, cvFloor(pt1.x));
roi.y = std::min(roi.y, cvFloor(pt1.y));
roi.width = std::max(roi.width, cvCeil(pt1.x));
roi.height = std::max(roi.height, cvCeil(pt1.y));
} roi.width -= roi.x - ;
roi.height -= roi.y - ;
int dx = border - roi.x;
int dy = border - roi.y; if( (roi.width+border*)*(roi.height+border*) > buf.cols )
buf.create(, (roi.width+border*)*(roi.height+border*), image.type()); warped = Mat(roi.height + border*, roi.width + border*,
image.type(), buf.data); T(,) += dx;
T(,) += dy;
(*this)(image, T, warped, warped.size(), rng); if( T.data != matT.data ) T.convertTo(matT, matT.type());
} // Params are assumed to be symmetrical: lambda w.r.t. 1, theta and phi w.r.t. 0
void PatchGenerator::setAffineParam(double lambda, double theta, double phi)
{
lambdaMin = . - lambda;
lambdaMax = . + lambda;
thetaMin = -theta;
thetaMax = theta;
phiMin = -phi;
phiMax = phi;
}
};

CMakeLists.txt

#Set minimum version requered
cmake_minimum_required(VERSION 2.4.)
#just to avoid the warning
if(COMMAND cmake_policy)
cmake_policy(SET CMP0003 NEW)
endif(COMMAND cmake_policy)
#set project name
project(TLD)
#Append path to the module path
list(APPEND CMAKE_MODULE_PATH ${PROJECT_SOURCE_DIR})
#OpenCV
find_package(OpenCV 3.3. REQUIRED)
#set the default path for built executables to the "bin" directory
set(EXECUTABLE_OUTPUT_PATH ${PROJECT_SOURCE_DIR}/../bin)
#set the default path for built libraries to the "lib" directory
set(LIBRARY_OUTPUT_PATH ${PROJECT_SOURCE_DIR}/../lib)
#set the include directories
include_directories (${PROJECT_SOURCE_DIR}/../include ${OpenCV_INCLUDE_DIRS})
#libraries
add_library(tld_utils tld_utils.cpp)
add_library(LKTracker LKTracker.cpp)
add_library(ferNN FerNNClassifier.cpp)
add_library(tld TLD.cpp patchgenerator.cpp)
#add_library(tld TLD.cpp)
#executables
add_executable(run_tld run_tld.cpp)
#link the libraries
target_link_libraries(run_tld tld LKTracker ferNN tld_utils ${OpenCV_LIBS})
#set optimization level
set(CMAKE_BUILD_TYPE Release)

run

cd OpenTLD
mkdir build
cd build
cmake ../src/
make
cd ../bin/
%To run from camera
./run_tld -p ../parameters.yml -tl
%To run from file
./run_tld -p ../parameters.yml -s ../datasets/06_car/car.mpg -tl
%To init bounding box from file
./run_tld -p ../parameters.yml -s ../datasets/06_car/car.mpg -b ../datasets/06_car/init.txt -tl
%To train only in the firs frame (no tracking, no learning)
./run_tld -p ../parameters.yml -s ../datasets/06_car/car.mpg -b ../datasets/06_car/init.txt
%To test the final detector (Repeat the video, first time learns, second time detects)
./run_tld -p ../parameters.yml -s ../datasets/06_car/car.mpg -b ../datasets/06_car/init.txt -tl -r

choose a bbox as one tracking object.

evaluation

=====================================
Evaluation
=====================================
The output of the program is a file called bounding_boxes.txt which contains all the detections made through the video. This file should be compared with the ground truth file to evaluate the performance of the algorithm. This is done using a python script:
python ../datasets/evaluate_vis.py ../datasets/06_car/car.mpg bounding_boxes.txt ../datasets/06_car/gt.txt

result

$python2 ../datasets/evaluate_vis.py ../datasets/06_car/car.mpg bounding_boxes.txt ../datasets/06_car/gt.txt
../datasets/evaluate_vis.py:: VisibleDeprecationWarning: using a non-integer number instead of an integer will result in an error in the future
frame[y1:y2,x1:x2]=(,,)
detections = 916.000000
true detections = 860.000000
correct detections = 850.000000
precision=0.927948
recall=0.988372
f-measure= 0.957207

re:

1. https://github.com/alantrrs/OpenTLD

2. https://github.com/arthurv/OpenTLD

3. http://blog.sina.com.cn/s/blog_b30296270102wbbw.html;

end

[]TLD code run的更多相关文章

  1. Thread的run()与start()的区别

    Java的线程是通过java.lang.Thread类来实现的.VM启动时会有一个由主方法所定义的线程.可以通过创建Thread的实例来创建新的线程.每个线程都是通过某个特定Thread对象所对应的方 ...

  2. Thread’s start method and run method

    工作中用到了Thread,一开始用错了,仔细研究了一下,稍作整理. 前言,今天写代码居然这样写的 new Thread() { @Override public void run() { System ...

  3. OPENGL: WHY IS YOUR CODE PRODUCING A BLACK WINDOW?

      Introduction One of the most common problems for novice, and sometimes experienced, OpenGL program ...

  4. Visual Studio Code搭建NodeJs的开发环境

    一.Visual Studio Code搭建NodeJs的开发环境 1.下载安装NodeJs并配置环境变量 可以参考:NodeJs的安装和环境变量配置 2.下载安装 VS Code编辑器 可以参考:V ...

  5. 基于Visual Studio Code搭建Vue开发环境

    安装node.js最新版 这里安装的是8.11.4版   image.png 更新npm至最新版 安装node.js后, npm默认版本为: 6.1.0   image.png 使用npm insta ...

  6. node.js运行配置(vs code非控制台输出)

    node.js运行配置(vs code非控制台输出) node  配置 简化  vs code 是非常强大的编译器,皆因它有有各种各样好用的插件. 在没有安装code runner插件之前,想要执行n ...

  7. 线程中start和run方法的区别

    先说java中实现多线程常用的两种方式:   1:继承Thread类,并重写run()方法   2:实现Runnable接口,实现run方法实际上Thread类也是实现了Runnable接口 [Jav ...

  8. 多线程爬坑之路-Thread和Runable源码解析

    多线程:(百度百科借一波定义) 多线程(英语:multithreading),是指从软件或者硬件上实现多个线程并发执行的技术.具有多线程能力的计算机因有硬件支持而能够在同一时间执行多于一个线程,进而提 ...

  9. XSS 前端防火墙 —— 无懈可击的钩子

    昨天尝试了一系列的可疑模块拦截试验,尽管最终的方案还存在着一些兼容性问题,但大体思路已经明确了: 静态模块:使用 MutationObserver 扫描. 动态模块:通过 API 钩子来拦截路径属性. ...

随机推荐

  1. ARP协议分析(Wireshark)

    一.说明 1.1 背景说明 以前学网络用的谢希仁的<计算机网络原理>,一是网开始学不太懂网络二是ARP协议是没有数据包格式的(如果没记错应该是没有).学完只记得老师说:ARP很简单的,就是 ...

  2. 华为S5700配置端口镜像和华三S5120配置802.1X认证记录

    一.说明 事情的起因是我们部门有个华为的S5700交换机,想配置端口镜像抓包但让助理买的串口线很久都还没到:而昨天测试部的同事说他们那有台华三的S5120想要配802.1X认证,但只有华为交换机的文档 ...

  3. android studio 编辑markdown文件

    作为开发人员,对markdown应该比较熟悉,我们在Android开始中,可以使用studio引入Markdown Navigator插件,进行编辑. 搜索 Markdown Navigator 安装 ...

  4. Oralce数据库的优化

    Oralce数据库的优化(面试必问) (1) 选择最有效率的表名顺序(只在基于规则的优化器中有效):ORACLE 的解析器按照从右到左的顺序处理FROM子句中的表名,FROM子句中写在最后的表(基础表 ...

  5. ImportError libcublas.so.9.0

    What to do when you've installed cuda and tensorflow, but you get this error right after you import ...

  6. springMVC控制器,处理器,映射器,适配器

    前端控制器DispatcherServlet <!--定义spring mvc 的前端控制器Servlet --><servlet> <!--Servlet的名称--&g ...

  7. Windows Message ID 常量列表大全

    namespace WindowsUtilities{    public enum WindowsMessages : int    {        WM_NULL = 0x0000,       ...

  8. python简单爬虫 用lxml解析页面中的表格

    目标:爬取湖南大学2018年在各省的录取分数线,存储在txt文件中 部分表格如图: 部分html代码: <table cellspacing="0" cellpadding= ...

  9. Java String 常量池理解

    String:字符串常量池 作为最基础的引用数据类型,Java 设计者为 String 提供了字符串常量池以提高其性能,那么字符串常量池的具体原理是什么,我们带着以下三个问题,去理解字符串常量池: 字 ...

  10. Android中的几个基本常用控件

    Android 中常用的几大UI控件 1. TextView : 用于在界面中显示一段文本信息 <TextView android:id="@+id/text_view" / ...