Problem

SPOJ-NORMA2 & bzoj3745

题意概要:给定一个正整数序列 \(\{a_i\}\),求

\[\sum_{i=1}^n\sum_{j=i}^n(j-i+1)\min(a_i,a_{i+1},\cdots,a_j)\max(a_i,a_{i+1},\cdots a_j)
\]

\(n\leq 5\times 10^5\)

Solution

这题正解是一个完美的 \(O(n\log n)\) 分治,但比较麻烦,鉴于这个分治做法已经漫天飞了,所以这里不讲那个算法

我在考场上在最后二十分钟想到了并打出了另一个分治做法,非常很好写跑得也很快,最终可以 AC

可以考虑对于一个序列 \(\{a_i\}\),找到其最大值 \(mx\) 与最小值 \(mi\),有大量区间都是以这两点为最值点的,而同时这些区间的左右端点分别都是连续的,所以可以考虑将这些区间一起计算

具体的,若找到的最大值与最小值分别在 \(p_1,p_2\) 取到(不妨设 \(p_1\leq p_2\)),则以这两者为最值点的区间 \([l,r]\) 满足 \(1\leq l\leq p_1,p_2\leq r\leq n\),这些区间的长度和可以 \(O(1)\) 算出,也即可以 \(O(1)\) 算出这些区间的贡献

进一步的,需要加上其他不是 同时以这两者为最值点 的区间贡献。设统计左右端点都在 \([l,r]\) 内的区间贡献也即刚刚这一步处理为函数 \(f(l,r)\),则其他区间的贡献即 \(f(l,p_2-1)+f(p_1+1,r)-f(p_1+1,p_2-1)\)(由于前面两个式子中重复计算了左右端点都在 \([p_1+1,p_2-1]\) 内的区间贡献,所以需要第三个函数去减去这部分多余的贡献)

所以现在可以得到一个基本的做法(统计 \([l,r]\) 区间):

  • \(O(1)\) 找到区间最大最小值所在位置 \(p_1,p_2(p_1\leq p_2)\)
  • \(O(1)\) 统计左端点在 \([l,p_1]\)、右端点在 \([p_2,r]\) 的区间的贡献
  • 分治统计区间 \([l,p_2-1],[p_1+1,r]\),并减去 \([p_1+1,p_2-1]\) 的答案

这个做法慢成龟龟,然后我灵机一动:分治下去的区间不是会继续使用当前最值点为最值点吗?(即 \([l,p_2-1]\) 会使用 \(p_1\) 为最值点,进而可能再次调用区间 \([p_1+1,p_2-1]\),这里的统计就冗余了,如果加个记忆化那么原来每次分出三个区间就可以均摊成两个了……)

然后就加了一下 \(map\) 的记忆化,极限数据只需要 \(0.4s\)

之前证了一波伪的复杂度 \(O(n\log n)\),后来被同校 dalao 精心卡掉了 虽然构造了一个多小时

实际上复杂度是 \(O(n^2\log n)\) 的,那个 \(\log\) 还是 \(map\) 的复杂度 没错这是个暴力,但很难卡满,在考试中、spoj和bzoj上都没能卡掉我♪(*)

实际运行效率很高,未经st表优化的代码在bzoj上跑到 \(\mathrm{rank6}\),比我写的正解快一倍,同时代码也很短很好写 毕竟是在十分钟内写完调完的,只有 \(\mathrm{1.2k}\)

Code

由于想到这个解法时时间紧迫,没来得及写 \(st\) 表做 \(\mathrm{rmq}\) 但还是过掉了

#include <bits/stdc++.h>
using namespace std;
typedef long long ll; template <typename _tp> inline _tp read(_tp&x){
char c11=getchar(),ob=0;x=0;
while(c11!='-'&&!isdigit(c11))c11=getchar();if(c11=='-')c11=getchar(),ob=1;
while(isdigit(c11))x=x*10+c11-'0',c11=getchar();if(ob)x=-x;return x;
} const int N=501000,p=1e9,inf=0x3f3f3f3f;
int a[N],n; map <int,int> mp[N]; inline int getsum(int l,int r){return 1ll*(l+r)*(r-l+1)/2%p;}
inline int qm(int x){while(x<0)x+=p;while(x>=p)x-=p;return x;} int force(int l,int r){
int res(0);
for(int i=l;i<=r;++i){
int mx=-inf,mi=inf;
for(int j=i;j<=r;++j){
mx=max(mx,a[j]);
mi=min(mi,a[j]);
res=qm(res+1ll*(j-i+1)*mi%p*mx%p);
}
}return res;
} int solve(int l,int r){
if(l>r)return 0;
if(mp[l].find(r)!=mp[l].end())
return mp[l][r];
if(r-l<=10)
return mp[l][r]=force(l,r);
int mx=-inf,mxd;
int mi=inf,mid;
for(int i=l;i<=r;++i){
if(a[i]>mx)mx=a[i],mxd=i;
if(a[i]<mi)mi=a[i],mid=i;
}
int L=min(mxd,mid),dl=L-l+1;
int R=max(mxd,mid),dr=r-R+1;
int dx=R-L-1,res(0);
if(dl>dr)swap(dl,dr);
for(int i=1;i<=dl;++i)
res=qm(res+getsum(i+dx+1,i+dx+dr));
res=1ll*res*mx%p*mi%p;
return mp[l][r]=qm(res+qm(solve(l,R-1)+solve(L+1,r))-solve(L+1,R-1));
} int main(){
read(n);
for(int i=1;i<=n;++i)read(a[i]);
printf("%d\n",solve(1,n));
return 0;
}

题解-COCI-2015Norma的更多相关文章

  1. [SinGuLaRiTy] COCI 2011~2012 #2

    [SinGuLaRiTy-1008] Copyright (c) SinGuLaRiTy 2017. All Rights Reserved. 测试题目 对于所有的题目:Time Limit:1s   ...

  2. 【题解】 Luogu P4312 / SP4155 [COCI 2009] OTOCI / 极地旅行社

    原题地址:P4312 [COCI 2009] OTOCI / 极地旅行社/SP4155 OTOCI - OTOCI lct入门难度的题,十分弱智(小蒟蒻说lct是什么,能吃吗?) bridge操作判联 ...

  3. COCI 2015、2016 1st round 题解(官方)

    官方题解: 官方代码: Code-KARTE: #include <cstdio> #include <iostream> #include <cstring> u ...

  4. BZOJ3188: [Coci 2011]Upit

    3188: [Coci 2011]Upit Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 72  Solved: 24[Submit][Status] ...

  5. [SinGuLaRiTy] COCI 2016~2017 #5

    [SinGuLaRiTy-1012] Copyright (c) SinGuLaRiTy 2017. All Rights Reserved. 最近神犇喜欢考COCI...... 测试题目 对于所有的 ...

  6. COCI 2018/2019 CONTEST #2 T4 Maja T5Sunčanje Solution

    COCI 2018/2019 CONTEST #2 T4 T5 Solution abstract 花式暴力 #2 T5 Sunčanje 题意 按顺序给你1e5个长方形(左下角坐标&& ...

  7. bzoj 2223 [Coci 2009]PATULJCI

    [Coci 2009]PATULJCI Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 1286  Solved: 553[Submit][Status ...

  8. [luogu]P4312 [COCI 2009] OTOCI / 极地旅行社(LCT)

    P4312 [COCI 2009] OTOCI / 极地旅行社 题目描述 不久之前,Mirko建立了一个旅行社,名叫"极地之梦".这家旅行社在北极附近购买了N座冰岛,并且提供观光服 ...

  9. 【题解】Dvoniz [COCI2011]

    [题解]Dvoniz [COCI2011] 没有传送门,只有提供了数据的官网. [题目描述] 对于一个长度为 \(2*K\) 的序列,如果它的前 \(K\) 个元素之和小于等于 \(S\) 且后 \( ...

  10. 题解:[COCI2011-2012#5] BLOKOVI

    题解:[COCI2011-2012#5] BLOKOVI Description PDF : https://hsin.hr/coci/archive/2011_2012/contest5_tasks ...

随机推荐

  1. SQL操作符、通配符等

    一.通配符 常用模糊查询:% SELECT * FROM TB_Name WHERE FIELD LIKE pattern   SELECT * FROM Persons WHERE name LIK ...

  2. python多线程场景下print丢失

    python多线程情况下,print输出会出现丢失的情况,而logging模块的日志输出不会. 以下是示例代码,多运行几次就会发现这个有意思的现象 # coding:utf-8 import thre ...

  3. Flutter控制屏幕旋转

    特定页面旋转屏幕很简单: SystemChrome.setPreferredOrientations([ ... ]); 数组中是您要支持的屏幕方向. 如果想在特定页面固定横屏, 您可以这样写: @o ...

  4. centos7之openvpn搭建

    一.环境介绍 操作系统centos7.4 openvpn版本:openvpn-2.1 lzo版本:lzo-2.03 二.搭建 关闭firewalld防火墙,并设置开机不启动.关闭selinux sys ...

  5. 在Asp.Net Core中集成ABP Dapper

    在实际的项目中,除了集成ABP框架的EntityFrameworkCore以外,在有些特定的场景下不可避免地会使用一些SQL查询语句,一方面是由于现在的EntityFrameworkCore2.X有些 ...

  6. 2019-04-29 EasyWeb下配置Atomikos+SQLServer分布式数据源

    初次尝试: 配置Mysql时候使用的是Atomikos+DruidXADataSource,所以觉得配置SQLServer应该也是仅仅配置配置就够了,于是引入JDBC驱动依赖后,配置了文件 sprin ...

  7. Python中布尔值是False的所有值

    在python中以下都是False:为0的,空集合,空字符串,空值None >>> bool(0) False >>> bool(-0) False >> ...

  8. CF997C Sky Full of Stars

    CF997C Sky Full of Stars 计数好题 在Ta的博客查看 容斥式子:发现只要每个钦定方案的贡献都考虑到再配上容斥系数就是对的 O(n^2)->O(n) 把麻烦的i=0,j=0 ...

  9. LOJ#2244 起床困难综合症

    解:m = 0的部分分,直接模拟.有and 0的部分分,直接模拟.<=1000的部分分,枚举攻击力之后模拟.所有操作相同的部分分,可以合并成只有一个操作.然后枚举m或者逐位贪心. 正解是逐位贪心 ...

  10. 使用Excel VBA编程将网点的百度坐标转换后标注到高德地图上

    公司网点表存储的坐标是百度坐标,现需要将网点位置标注到高德地图上,研究了一下高德地图的云图数据模版 http://lbs.amap.com/yuntu/reference/cloudstorage和坐 ...