洛谷 P5019 铺设道路
洛谷 P5019 铺设道路
题目描述
春春是一名道路工程师,负责铺设一条长度为 \(n\) 的道路。
铺设道路的主要工作是填平下陷的地表。整段道路可以看作是 \(n\) 块首尾相连的区域,一开始,第 \(i\) 块区域下陷的深度为 \(d_i\)。
春春每天可以选择一段连续区间 \([L,R]\) ,填充这段区间中的每块区域,让其下陷深度减少 \(1\)。在选择区间时,需要保证,区间内的每块区域在填充前下陷深度均不为 \(0\) 。
春春希望你能帮他设计一种方案,可以在最短的时间内将整段道路的下陷深度都变为 \(0\) 。
输入输出格式
输入格式:
输入文件包含两行,第一行包含一个整数 \(n\),表示道路的长度。 第二行包含 \(n\) 个整数,相邻两数间用一个空格隔开,第 \(i\)个整数为 \(d_i\)。
输出格式:
输出文件仅包含一个整数,即最少需要多少天才能完成任务。
输入输出样例
输入样例#1:
6
4 3 2 5 3 5
输出样例#1:
9
说明
【样例解释】
一种可行的最佳方案是,依次选择: \([1,6]\)、\([1,6]\)、\([1,2]\)、\([1,1]\)、\([4,6]\)、\([4,4]\)、\([4,4]\)、\([6,6]\)、\([6,6]\)。
【数据规模与约定】
对于 \(30\%\) 的数据,\(1 ≤ n ≤ 10\) ;
对于 \(70\%\)的数据,\(1 ≤ n ≤ 1000\) ;
对于 \(100\%\) 的数据,\(1 ≤ n ≤ 100000\) , \(0 ≤ d_i ≤ 10000\)。
思路
CCF我抄我自己经典题目,一道简单贪心,和积木大赛一个样
代码
#include<iostream>
#include<cstdio>
#include<cmath>
#include<queue>
#include<stack>
#include<algorithm>
#include<cstring>
#include<string>
#define N 100000+10
#define INF 0x3f3f3f3f
using namespace std;
inline int read() {
char c=getchar();
int x=0,f=1;
while(c<'0'||c>'9') {if(c=='-')f=-1;c=getchar();}
while(c>='0'&&c<='9')x=x*10+c-48,c=getchar();
return x*f;
}
int n,a[N];
long long ans=0;
int main() {
freopen("road.in","r",stdin);
freopen("road.out","w",stdout);
n=read();
for(int i=1; i<=n; i++)
a[i]=read();
for(int i=2; i<=n; i++)
if(a[i]>a[i-1])
ans+=a[i]-a[i-1];
printf("%d\n",ans+a[1]);
fclose(stdin);
fclose(stdout);
return 0;
}
洛谷 P5019 铺设道路的更多相关文章
- NOIP2018&2013提高组T1暨洛谷P5019 铺设道路
题目链接:https://www.luogu.org/problemnew/show/P5019 花絮:普及蒟蒻终于A了一道提高的题目?emm,写一篇题解纪念一下吧.求过! 分析: 这道题我们可以采用 ...
- 洛谷 P5019 铺设道路 & [NOIP2018提高组](贪心)
题目链接 https://www.luogu.org/problem/P5019 解题思路 一道典型的贪心题. 假设从左往右填坑,如果第i个深与第i+1个,那么第i+1个就不需要额外填: 如果第i+1 ...
- 洛谷P5019 铺设道路 题解 模拟/贪心基础题
题目链接:https://www.luogu.org/problemnew/show/P5019 这道题目是一道模拟题,但是它有一点贪心的思想. 我们假设当前最大的深度是 \(d\) ,那么我们需要把 ...
- 洛谷 P5019 铺设道路(差分)
嗯... 题目链接:https://www.luogu.org/problem/P5019 首先简化一下题意: 给定一个长为N的数组,每次操作可以选择一个区间减去1,问最少多少次操作可以将数组中的数全 ...
- 题解【洛谷P5019】[NOIP2018]铺设道路
题目描述 春春是一名道路工程师,负责铺设一条长度为 \(n\) 的道路. 铺设道路的主要工作是填平下陷的地表.整段道路可以看作是 \(n\) 块首尾相连的区域,一开始,第 \(i\) 块区域下陷的深度 ...
- 洛谷P5019 [NOIP2018 提高组] 铺设道路
题目描述 春春是一名道路工程师,负责铺设一条长度为 n 的道路. 铺设道路的主要工作是填平下陷的地表.整段道路可以看作是 n 块首尾相连的区域,一开始,第 i 块区域下陷的深度为 di. 春春每天可以 ...
- 【洛谷P5019】铺设道路
题目链接 众所周知,这道题和积木大赛是同一道题 题意就是给出一段自然数序列,每次操作\((L,R)\)把区间\([L,R]\)的数全部减一,不允许出现负数,问把序列变为零的最小操作次数 贪心做法 样例 ...
- [NOIP2014] 提高组 洛谷P2296 寻找道路
题目描述 在有向图G 中,每条边的长度均为1 ,现给定起点和终点,请你在图中找一条从起点到终点的路径,该路径满足以下条件: 1 .路径上的所有点的出边所指向的点都直接或间接与终点连通. 2 .在满足条 ...
- NOIP2014 day2 T2 洛谷P2296 寻找道路
题目描述 在有向图G 中,每条边的长度均为1 ,现给定起点和终点,请你在图中找一条从起点到终点的路径,该路径满足以下条件: 1 .路径上的所有点的出边所指向的点都直接或间接与终点连通. 2 .在满足条 ...
随机推荐
- flask读书笔记
学习flask的一个很好的网站:http://www.pythondoc.com/flask-mega-tutorial/helloworld.html ======================= ...
- 学习懈怠的时候,可以运行Qt自带的Demo,或者Delphi控件自带的Demo,或者Cantu书带的源码,运行一下Boost的例子(搞C++不学习Boost/Poco/Folly绝对是一大损失,有需要使用库要第一时间想到)(在六大的痛苦经历说明,我的理论性确实不强,更适合做实践)
这样学还不用动脑子,而且熟悉控件也需要时间,而且慢慢就找到感觉了,就可以精神抖擞的恢复斗志干活了.或者Cantu书带的源码. 并且可以使用Mac SSD运行Qt的Demo,这样运行速度快一点. 此外, ...
- Elasticsearch学习笔记(五)索引元数据和集群元数据
一.索引元数据 执行:GET /ecommerce/product/1 返回结果: { "_index": "ecommerce", "_ty ...
- 解决配置Windows Update失败问题
大家都清楚电脑总是需要更新一些补丁,不过,很多系统用户发现更新了补丁之后,开机会出现windows update更新失败的情况,提示“配置Windows Update失败,还原更改,请勿关闭计算机”信 ...
- phpstudy2018 安装xdebug扩展
第一步:查看PHP版本信息 第二步:到xdebug下载页去下载最新的版本(注意:要下载PHP对应版本) 第三步:把扩展php_xdebug-2.7.0alpha1-7.2-vc15-nts.dll放到 ...
- 2018-2019-2 网络对抗技术 20165321 Exp6 信息搜集与漏洞扫描
1.实践目标 掌握信息搜集的最基础技能与常用工具的使用方法. 2.实践内容 (1)各种搜索技巧的应用 百度查找IP地址: 查了一下kali的IP地址 https://fofa.so/的使用: 查询了一 ...
- Docker入门详解(转载)
来源 http://dockone.io http://dockone.io/article/6051 Docker是世界领先的软件容器平台,所以想要搞懂Docker的概念我们必须先从容器开始说起. ...
- Redis.之.环境搭建(集群)
Redis.之.环境搭建(集群) 现有环境: /u01/app/ |- redis # 单机版 |- redis-3.2.12 # redis源件 所需软件:redis-3.0.0.gem -- ...
- 搭建apache本地服务器·Mac
1. 打开终端,开启Apache: //开启apache: sudo apachectl start //重启apache: sudo apachectl restart //关闭apache: su ...
- Fiddler抓包【1】_介绍及界面概述
一. 主要抓包工具介绍与对比 1.Wireshark :通用抓包工具,抓取信息量庞大,需要过滤才能得到有用信息,只抓HTTP请求有点大财小用. 2.Firebug.HttpWatch等Web调试工 ...