1.算法概述

假设X是从真实的数据(或语料库)中抽取的样本,其服从一个相对可参考的概率密度函数P(d),噪音样本Y服从概率密度函数为P(n),噪音对比估计(NCE)就是通过学习一个分类器把这两类样本区别开来,并能从模型中学到数据的属性。

模型原始论文:Noise-contrastive estimation: A new estimation principle for unnormalized statistical models
tensorflow引用:Candidate Sampling Algorithms Reference

2.算法要点与推导

2.1损失函数定义:

\[
\text{让$U=X\bigcup Y={u1,u2,⋯,u_{T_d}+u_{T_n}}$,其中$T_d$为数据样本个数,$T_n$为噪音分布的样本个数。那么我们认为$u_t$服从(0-1)分布,给每个$u_t$一个标签$C_t$,则}
\]

\[
C_t=
\begin{cases}
1, & \text{if $u_t \in X$} \\
0, & \text{if $u_t \in Y$}
\end{cases}
\]

\[
\text{由于$p_d$未知,我们让$p(⋅|C=1)=p_m(.;θ)$,我们假设存在一个$\theta^*$}
\text{使得$p_d(.)=p_m(.;\theta^*)$,那么,就可以认为经验分布$p_d(.)$为参数分布簇$p_m(.;θ)$中的一员。}
\]
给定以上定义,我们得到:

\[
\begin{cases}
p(u|C=1)=p_m(u;\theta) ,& \text{data} \\
p(u|C=0)=p_n(u) ,& \text{noise}
\end{cases}
\]
这里时间有限,中间推到步骤先略过。最终得到损失函数公式如下:

\[
L(θ)=Σ^{T_d+T_n}_{t=1}[C_tlnP(C_t=1|u_t;\theta)+(1-C_t)lnP(C_t=0|u_t)] =Σ^{T_d}_{t=1}ln[h(x_t;θ)]+Σ^{Tn}_{t=1}ln[1-h(y_t;θ)]
\]
注意到,如果给式(9)加上个负号就成为了交叉熵函数了。从结果可以看出,我们进行的无监督学习的密度估计可由监督学习算法logistic regression来学习,这就是监督学习与无监督学习的联系。

3.算法特性及优缺点

4.实现和具体例子

噪音对比估计(NCE)
tensorflow tf.nn.nce_loss()源代码学习

NCE损失(Noise-Constrastive Estimation Loss)的更多相关文章

  1. Noise Contrastive Estimation

    Notes from Notes on Noise Contrastive Estimation and Negative Sampling one sample: \[x_i \to [y_i^0, ...

  2. Notes on Noise Contrastive Estimation and Negative Sampling

    Notes on Noise Contrastive Estimation and Negative Sampling ## 生成负样本 在常见的关系抽取应用中,我们经常需要生成负样本来训练一个好的系 ...

  3. 通俗易懂讲解Word2vec的本质

    本文首发于微信公众号「对白的算法屋」,来一起学AI叭 一.Word2vec CBOW(Continuous Bag-of-Words):每个词的含义都由相邻词决定. Skip-gram:依据分布的相似 ...

  4. Hinge Loss、交叉熵损失、平方损失、指数损失、对数损失、0-1损失、绝对值损失

    损失函数(Loss function)是用来估量你模型的预测值 f(x) 与真实值 Y 的不一致程度,它是一个非负实值函数,通常用 L(Y,f(x)) 来表示.损失函数越小,模型的鲁棒性就越好. 损失 ...

  5. 论文阅读笔记四十四:RetinaNet:Focal Loss for Dense Object Detection(ICCV2017)

    论文原址:https://arxiv.org/abs/1708.02002 github代码:https://github.com/fizyr/keras-retinanet 摘要 目前,具有较高准确 ...

  6. [AI] 论文笔记 - CVPR2018 Super SloMo: High Quality Estimation of Multiple Intermediate Frames for Video Interpolation

    写在前面 原始视频(30fps) 补帧后的视频(240fps) 本文是博主在做实验的过程中使用到的方法,刚好也做为了本科毕设的翻译文章,现在把它搬运到博客上来,因为觉得这篇文章的思路真的不错. 这篇文 ...

  7. loss function

    什么是loss?   loss: loss是我们用来对模型满意程度的指标.loss设计的原则是:模型越好loss越低,模型越差loss越高,但也有过拟合的情况.   loss function: 在分 ...

  8. Faster RNNLM (HS/NCE) toolkit

    https://github.com/kjw0612/awesome-rnn Faster Recurrent Neural Network Language Modeling Toolkit wit ...

  9. 【论文:麦克风阵列增强】Microphone Array Post-Filtering For Non-Stationary Noise Suppression

    作者:桂. 时间:2017-06-08  08:01:41 链接:http://www.cnblogs.com/xingshansi/p/6957027.html 原文链接:http://pan.ba ...

随机推荐

  1. 理解SignalR

    ASP .NET SignalR 是一个ASP .NET 下的类库,可以在ASP .NET 的Web项目中实现即时通信(即:客户端(Web页面)和服务器端可以互相实时的通知消息及调用方法),即时通讯W ...

  2. Linux(CentOS7)压缩和解压缩war包、tar包、tar.gz包命令

    一.Linux版本 二.解压缩.tar.gz包到当前目录 tar -xzvf apache-tomcat-7.0.90.tar.gz 三.将指定文件压缩成.tar.gz包 tar -czf apach ...

  3. MySQL 是如何解决幻读的

    MySQL 是如何解决幻读的 一.什么是幻读 在一次事务里面,多次查询之后,结果集的个数不一致的情况叫做幻读. 而多出来或者少的哪一行被叫做 幻行 二.为什么要解决幻读 在高并发数据库系统中,需要保证 ...

  4. IntelliJ IDEA 最新激活码

    C40PF37RR0-eyJsaWNlbnNlSWQiOiJDNDBQRjM3UlIwIiwibGljZW5zZWVOYW1lIjoiemhhbmcgeW9uZyIsImFzc2lnbmVlTmFtZ ...

  5. vue动态设置初始页

  6. 最大k乘积问题

    68.最大k乘积问题 (15分)C时间限制:3000 毫秒 | C内存限制:3000 Kb题目内容:设I是一个n位十进制整数.如果将I划分为k段,则可得到k个整数.这k个整数的乘积称为I的一个k乘积. ...

  7. 使用python抓取数据之菜鸟爬虫1

    ''' Created on 2018-5-27 @author: yaoshuangqi ''' #本代码获取百度乐彩网站上的信息,只获取最近100期的双色球 import urllib.reque ...

  8. 工具(2): 极简MarkDown排版介绍(How to)

    如何切换编辑器 切换博客园编辑器为MarkDown:MarkDown Editor 选择一个在线编辑和预览站点:StackEdit 如何排版章节 MarkDown: 大标题 ========== 小标 ...

  9. 关联分析中寻找频繁项集的FP-growth方法

    关联分析是数据挖掘中常用的分析方法.一个常见的需求比如说寻找出经常一起出现的项目集合. 引入一个定义,项集的支持度(support),是指所有包含这个项集的集合在所有数据集中出现的比例. 规定一个最小 ...

  10. ##Django中Application labels aren't unique解决方法##

    pip更新了所有插件,发现了按平常编码遇到些问题,记录下. Django错误 django.core.exceptions.ImproperlyConfigured: Application labe ...