机器学习之朴素贝叶斯&贝叶斯网络
- 贝叶斯决决策论
在所有相关概率都理想的情况下,贝叶斯决策论考虑基于这些概率和误判损失来选择最优标记,基本思想如下:
(1)已知先验概率和类条件概率密度(似然)
(2)利用贝叶斯转化为后验概率
(3)根据后验概率的大小进行决策分类
1、风险最小化
风险:根据后验概率可以获得将样本分为某类所产生的期望损失,即在该样本上的“条件风险”。

目的:寻找最小化总体风险,只需在每个样本上选择能使条件风险最小的类标记

2、决策风险最小化---后验概率最大化
获得后验概率有两种方法,机器学习也因为这两种方法被分为判别模型和生成模型。
判别模型:对于给定的x, 通过建模P(c|x)来预测c.
生成模型:先对联合分布P(c,x)建模,在算出P(c|x)

- 朴素贝叶斯(NB)
假设:属性之间需要相互独立
算法:
input: 训练集T={(xi,yi)|i=1...N}
output:实例x的分类

- 半朴素贝叶斯(SNB)
适当地考虑一些属性之间的相互依赖关系
问题变为:寻找被依赖的属性,即父属性。
SPODE:所有属性都依赖于同一属性,通过交叉验证的方法确定超父属性。

TAN(最大带权生成树):

(1)计算量属性之间的互信息,作为两节点之间边的权重

(2)插入最大权重边
(3)找到下一个最大边,并加入到树中,要求不成为环
(4)重复上述过程,直到插入n-1条边
(5)标出方向
AODE:
集成学习机制,更强大的独依赖分类器,尝试将每个属性作为超父来构建SPODE
- 贝叶斯网络(NB)
经典的概率图模型(有向无环图模型)
把某个研究系统中涉及的随机变量,根据能否条件独立的绘制在一张有向图中,就成了贝叶斯网络。一个贝叶斯网络由结构和参数两部分组成。
三个变量间的典型依赖关系:
(1)同父结构(tail-to-tail)

c已知的情况下,P(a,b,c)=P(a)P(b|c)P(b|c),无法得出a,b独立。
c未知的情况下,a,b独立
(2)V型结构(head-to-head)
c未知时,a,b独立
(3)顺序结构(head-to-tail)

c已知时,a,b独立;反之,不独立。
- 如何学习构成一个贝叶斯网络
根据训练集学习出好的贝叶斯网络是解决问题的关键,“评分搜索”是常用的学习方法。
爬山算法:
(1)选择一个网络结构G(一般为空)
(2)计算这一结构的得分,并取最大得分
(3)随着得分的增大,循环进行:对边的增加和修正,更新最大得分
(4)返回一个有向图。
- R语言代码实现:
朴素贝叶斯:

贝叶斯网络:


机器学习之朴素贝叶斯&贝叶斯网络的更多相关文章
- 说说C#之父——安德斯·海尔斯伯格
安德斯·海尔斯伯格(Anders Hejlsberg,1960.12~),丹麦人,Turbo Pascal编译器的主要作者,Delphi和.NET之父! 看到照片的那一刹那儿,我就觉得帅爆了,53岁的 ...
- [机器学习&数据挖掘]朴素贝叶斯数学原理
1.准备: (1)先验概率:根据以往经验和分析得到的概率,也就是通常的概率,在全概率公式中表现是“由因求果”的果 (2)后验概率:指在得到“结果”的信息后重新修正的概率,通常为条件概率(但条件概率不全 ...
- 机器学习:朴素贝叶斯--python
今天介绍机器学习中一种基于概率的常见的分类方法,朴素贝叶斯,之前介绍的KNN, decision tree 等方法是一种 hard decision,因为这些分类器的输出只有0 或者 1,朴素贝叶斯方 ...
- Python机器学习算法 — 朴素贝叶斯算法(Naive Bayes)
朴素贝叶斯算法 -- 简介 朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法.最为广泛的两种分类模型是决策树模型(Decision Tree Model)和朴素贝叶斯模型(Naive Baye ...
- 100天搞定机器学习|Day15 朴素贝叶斯
Day15,开始学习朴素贝叶斯,先了解一下贝爷,以示敬意. 托马斯·贝叶斯 (Thomas Bayes),英国神学家.数学家.数理统计学家和哲学家,1702年出生于英国伦敦,做过神甫:1742年成为英 ...
- 吴裕雄--天生自然python机器学习:朴素贝叶斯算法
分类器有时会产生错误结果,这时可以要求分类器给出一个最优的类别猜测结果,同 时给出这个猜测的概率估计值. 概率论是许多机器学习算法的基础 在计算 特征值取某个值的概率时涉及了一些概率知识,在那里我们先 ...
- 概率图形模型(PGM)学习笔记(四)-贝叶斯网络-伯努利贝叶斯-贝叶斯多项式
之前忘记强调重要的差异:链式法则的条件概率和贝叶斯网络的链式法则之间的差异 条件概率链式法则 P\left({D,I,G,S,L} \right) = P\left( D \right)P\left( ...
- 掌握Spark机器学习库-08.2-朴素贝叶斯算法
数据集 iris.data 数据集概览 代码 import org.apache.spark.SparkConf import org.apache.spark.ml.classification.{ ...
- Infer.net 开源组件: 1, 机器学习入门,要从贝叶斯说起
我的入门方式,先从应用现象中,总结规律反推本质.一头扎进理论书籍是不对的. 老外的先进,还是体现在传承方面.没办法,我们竞争压力大,有好东西藏着掖着.大家都苦逼 我最开始是从介绍,有了基本概念,见xx ...
随机推荐
- js回调函数以及同步与异步
1. 背景介绍javascript的单线程特性由于javascript语言是一门“单线程”的语言,所以,javascript就像一条流水线,仅仅是一条流水线而已,要么加工,要么包装,不能同时进行多个任 ...
- TYVJ P1039 【忠诚2】
题目描述 老管家是一个聪明能干的人.他为财主工作了整整10年,财主为了让自已账目更加清楚.要求管家每天记k次账,由于管家聪明能干,因而管家总是让财主十分满意.但是由于一些人的挑拨,财主还是对管家产生了 ...
- ssm框架中文请求乱码get
<bean id="utf8Charset" class="java.nio.charset.Charset" factory-method=" ...
- three.js初探,立体几何入手(一)
前言:首先先推荐一篇博客,关于webgl原理,讲的非常之通俗易懂了 图解WebGL&Three.js工作原理 webGL可以理解为openGL ES2.0 (webGL2.0 - openG ...
- CSS scroll-behavior和JS scrollIntoView让页面滚动平滑
转自 https://www.zhangxinxu.com/wordpress/2018/10/scroll-behavior-scrollintoview-%E5%B9%B3%E6%BB%91%E6 ...
- Getting a handle on
Getting a handle on 丑闻处理 Corporate crises drive the media and politicians wild.But do they damage sh ...
- P2822 组合数问题
传送门 思路: 利用公式: C( n,r ) = C( n-1,r ) + C( n-1,r-1 ) 由此可以将计算 C( n,r ) 的过程化为加法来做. 可以看出,C( n,r ) 其实就是求杨辉 ...
- Vue开发与调试工具
vscode: Visual Studio Code https://code.visualstudio.com/Download 可以下载各个版本的,Windows/ Debian /Mac 等 W ...
- rtf乱码解决办法
首先,阐述下rtf,富文本格式文档,目前常用来做模板: 我遇到的问题是rtf中替换后的文本显示是正常的,rtf直接转pdf就不正常了,通过notpad++ 打开后发现rtf本身内容编码是我没有见过的( ...
- CF Manthan, Codefest 16 B. A Trivial Problem
数学技巧真有趣,看出规律就很简单了 wa 题意:给出数k 输出所有阶乘尾数有k个0的数 这题来来回回看了两三遍, 想的方法总觉得会T 后来想想 阶乘 emmm 1*2*3*4*5*6*7*8*9 ...