pytorch, LSTM介绍
本文中的RNN泛指LSTM,GRU等等
CNN中和RNN中batchSize的默认位置是不同的。
- CNN中:batchsize的位置是
position 0. - RNN中:batchsize的位置是
position 1.
在RNN中输入数据格式:
对于最简单的RNN,我们可以使用两种方式来调用,torch.nn.RNNCell(),它只接受序列中的单步输入,必须显式的传入隐藏状态。torch.nn.RNN()可以接受一个序列的输入,默认会传入一个全0的隐藏状态,也可以自己申明隐藏状态传入。
- 输入大小是三维tensor
[seq_len,batch_size,input_dim]
input_dim是输入的维度,比如是128batch_size是一次往RNN输入句子的数目,比如是5。seq_len是一个句子的最大长度,比如15
所以千万注意,RNN输入的是序列,一次把批次的所有句子都输入了,得到的ouptut和hidden都是这个批次的所有的输出和隐藏状态,维度也是三维。
**可以理解为现在一共有batch_size个独立的RNN组件,RNN的输入维度是input_dim,总共输入seq_len个时间步,则每个时间步输入到这个整个RNN模块的维度是[batch_size,input_dim]
# 构造RNN网络,x的维度5,隐层的维度10,网络的层数2
rnn_seq = nn.RNN(5, 10,2)
# 构造一个输入序列,句长为 6,batch 是 3, 每个单词使用长度是 5的向量表示
x = torch.randn(6, 3, 5)
#out,ht = rnn_seq(x,h0)
out,ht = rnn_seq(x) #h0可以指定或者不指定
问题1:这里out、ht的size是多少呢?
回答:out:6 * 3 * 10, ht: 2 * 3 * 10,out的输出维度[seq_len,batch_size,output_dim],ht的维度[num_layers * num_directions, batch, hidden_size],如果是单向单层的RNN那么一个句子只有一个hidden。
问题2:out[-1]和ht[-1]是否相等?
回答:相等,隐藏单元就是输出的最后一个单元,可以想象,每个的输出其实就是那个时间步的隐藏单元
RNN的其他参数
RNN(input_dim ,hidden_dim ,num_layers ,…)
– input_dim 表示输入的特征维度
– hidden_dim 表示输出的特征维度,如果没有特殊变化,相当于out
– num_layers 表示网络的层数
– nonlinearity 表示选用的非线性激活函数,默认是 ‘tanh’
– bias 表示是否使用偏置,默认使用
– batch_first 表示输入数据的形式,默认是 False,就是这样形式,(seq, batch, feature),也就是将序列长度放在第一位,batch 放在第二位
– dropout 表示是否在输出层应用 dropout
– bidirectional 表示是否使用双向的 rnn,默认是 False
LSTM的输出多了一个memory单元
# 输入维度 50,隐层100维,两层
lstm_seq = nn.LSTM(50, 100, num_layers=2)
# 输入序列seq= 10,batch =3,输入维度=50
lstm_input = torch.randn(10, 3, 50)
out, (h, c) = lstm_seq(lstm_input) # 使用默认的全 0 隐藏状态
问题1:out和(h,c)的size各是多少?
回答:out:(10 * 3 * 100),(h,c):都是(2 * 3 * 100)
问题2:out[-1,:,:]和h[-1,:,:]相等吗?
回答: 相等
GRU比较像传统的RNN
gru_seq = nn.GRU(10, 20,2) # x_dim,h_dim,layer_num
gru_input = torch.randn(3, 32, 10) # seq,batch,x_dim
out, h = gru_seq(gru_input)
pytorch, LSTM介绍的更多相关文章
- pytorch学习笔记(九):PyTorch结构介绍
PyTorch结构介绍对PyTorch架构的粗浅理解,不能保证完全正确,但是希望可以从更高层次上对PyTorch上有个整体把握.水平有限,如有错误,欢迎指错,谢谢! 几个重要的类型和数值相关的Tens ...
- 网络流量预测入门(二)之LSTM介绍
目录 网络流量预测入门(二)之LSTM介绍 LSTM简介 Simple RNN的弊端 LSTM的结构 细胞状态(Cell State) 门(Gate) 遗忘门(Forget Gate) 输入门(Inp ...
- LSTM介绍
转自:https://blog.csdn.net/gzj_1101/article/details/79376798 LSTM网络 long short term memory,即我们所称呼的LSTM ...
- RNN LSTM 介绍
[RNN以及LSTM的介绍和公式梳理]http://blog.csdn.net/Dark_Scope/article/details/47056361 [知乎 对比 rnn lstm 简单代码] ...
- pytorch lstm crf 代码理解 重点
好久没有写博客了,这一次就将最近看的pytorch 教程中的lstm+crf的一些心得与困惑记录下来. 原文 PyTorch Tutorials 参考了很多其他大神的博客,https://blog.c ...
- pytorch lstm crf 代码理解
好久没有写博客了,这一次就将最近看的pytorch 教程中的lstm+crf的一些心得与困惑记录下来. 原文 PyTorch Tutorials 参考了很多其他大神的博客,https://blog.c ...
- Pytorch LSTM 词性判断
首先,我们定义好一个LSTM网络,然后给出一个句子,每个句子都有很多个词构成,每个词可以用一个词向量表示,这样一句话就可以形成一个序列,我们将这个序列依次传入LSTM,然后就可以得到与序列等长的输出, ...
- pytorch LSTM情感分类全部代码
先运行main.py进行文本序列化,再train.py模型训练 dataset.py from torch.utils.data import DataLoader,Dataset import to ...
- RNN、LSTM介绍以及梯度消失问题讲解
写在最前面,感谢这两篇文章,基本上的框架是从这两篇文章中得到的: https://zhuanlan.zhihu.com/p/28687529 https://zhuanlan.zhihu.com/p/ ...
随机推荐
- 第五节: Quartz.Net五大构件之Trigger的四大触发类
一. WithSimpleSchedule(ISimpleTrigger) 1. 用途:时.分.秒上的轮询(和timer类似),实际开发中,该场景占绝大多数. 2. 轮询的种类:永远轮询和限定次数轮询 ...
- 防止Web表单重复提交的方法总结
在Web开发中,对于处理表单重复提交是经常要面对的事情.那么,存在哪些场景会导致表单重复提交呢?表单重复提交会带来什么问题?有哪些方法可以避免表单重复提交? 表单重复提交的场景 1.场景一:服务端未能 ...
- Erdos
Erdős Pál(1913年3月26日-1996年9月20日),匈牙利籍犹太人,发表论文达1475篇(包括和人合写的),为现时发表论文第二多的数学家(第一是Euler):曾和509人合写论文. Er ...
- Centos 7 图形安装笔记(超详细)
1. 下载虚拟机(VMware Workstation Pro) 2. 安装虚拟机(Windows下安装虚拟机,自行网上搜索) 3. 下载Centos 7.4系统(国内建议使用阿里云: http:// ...
- 数据库的URL格式
Oracle数据库: 驱动jar包: ojdbc6.jar 驱动程序类名字:oracle.jdbc.OracleDriver JDBC URL:jdbc:oracle:thin:@//<host ...
- JS中小数相加相减时出现很长的小数点的解决方式
1.问题: 平时写的代码中会出现这种情况,parseFloat(11.3-10.1) 运行的结果依然是1.200000000000001 代码示例: var arr = [0.0111,11.002, ...
- 【原创】大叔问题定位分享(27)spark中rdd.cache
spark 2.1.1 spark应用中有一些task非常慢,持续10个小时,有一个task日志如下: 2019-01-24 21:38:56,024 [dispatcher-event-loop-2 ...
- 【微信小程序】 wx:if 与 hidden(隐藏元素)区别
wx:if 与 hidden 都可以控制微信小程序中元素的显示与否. 区别: wx:if 是遇 true 显示,hidden 是遇 false 显示. wx:if 在隐藏的时候不渲染,而 hidden ...
- 服务器启动socket服务报错 java.net.BindException:Cannot assign requested address
错误信息: 2017-06-13 11:18:00,865 [GateServer.java:82][ERROR]:启动服务出错了java.net.BindException: Cannot ass ...
- vmware ubuntu硬盘空间不够用,空间扩展
我从来没有想过我的虚拟机内存会不够用,毕竟已经20G了,可是最近学习python,装了些学习有关的软件, 期末做libvirt管理实验,存了两个镜像,就变成这样了,所以,我就像了要扩展硬盘空间,在网上 ...