\(i^2\)求和

老祖宗告诉我们\(\sum_{i=1}^n i^2 = \frac{n(n+1)(2n+1)}{6}\)

但是这玩意儿是怎么出来的呢?感觉网上用立方差证明的思路太low了,今天偶然间在Miskcoo大佬的博客中看到了一种脑洞清奇通俗易懂的证明方法

我们要求的是\(S_n = \sum_{i=1}^n i^2\),现在我们对\(C_n = \sum_{i=1}^n i^3\)来进行"扰动"。

首先列一个恒等式

\[\sum_{i=1}^{n+1} i^3 = C_n + (n+1)^3\]

这里有个骚操作是把前面的转化一下

\[\sum_{i=0}^n (i+1)^3 = C_n + (n+1)^3\]

然后就可以推柿子啦。

\[
\begin{aligned}
\sum_{i=0}^n i^3 + 3i^2 + 3i + 1 &= C_n + (n+1)^3\\
C_n + 3S_n + 3\frac{n(n+1)}{2} + (n+1)&= C_n + (n+1)^3\\
\end{aligned}
\]

\[
\begin{aligned}
\Rightarrow S_n &= \frac{2(n+1)^3 - 3n(n+1)-2(n+1)}{6}\\
&=\frac{n(2n + 1)(n+1)}{6}
\end{aligned}
\]

同时这个方法具有非常强的扩展性,我们也可以推导出\(i^k\)的公式,但是计算起来的复杂度却是\(k^2\)的,感觉还是拉格朗日插值\(k \log k\)好用一些

参考资料

幂和

i的二次幂求和的更多相关文章

  1. hdu 5690 2016"百度之星" - 初赛(Astar Round2A) All X 快速二次幂 || 寻找周期

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5690 题意:m个数字全为x mod k ?= c;其中m <= 1010,0 < c,k ...

  2. Codeforces 988D Points and Powers of Two ( 思维 || 二的幂特点 )

    题目链接 题意 : 给出坐标轴上的 n 个点的横坐标,要你选出最多的点,使得这些点两两距离是二的幂 ( 特殊情况 : 选出的集合只有一个点也满足条件 ) 分析 : 官方题解已经说的很好了 最关键是是判 ...

  3. RSA简介(二)——模幂算法

    RSA最终加密.解密都要用到模乘的幂运算,简称模幂运算. 回忆一下RSA,从明文A到B B=Ae1%N 对B解密,就是 A=Be2%N 其中,一般来说,加密公钥中的e1一般会比较小,取65537居多, ...

  4. FZU_1683 矩阵快速幂 求和

    这个题目确实是很简单的一个矩阵快速幂,但是我在求和的时候,用的是标准的求和,即,一共计算logN次Ak,但是这样会超时. 后来就发现原来本身和Sn=Sn-1+Fn:即Sn本身可以写在矩阵当中,所以直接 ...

  5. 【日常学习】【搜索/递归】codevs2802 二的幂次方题解

    转载请注明出处 [ametake版权全部]http://blog.csdn.net/ametake欢迎来看 题目描写叙述 Description 不论什么一个正整数都能够用2的幂次方表示. 比如:13 ...

  6. AcWing 225. 矩阵幂求和 (矩阵快速幂+分治)打卡

    题目:https://www.acwing.com/problem/content/227/ 题意:给你n,k,m,然后输入一个n阶矩阵A,让你求  S=A+A^2+A^3.+......+A^k 思 ...

  7. [leetcode]304. Range Sum Query 2D - Immutable二维区间求和 - 不变

    Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper lef ...

  8. 自然数幂求和——第二类Strling数

    这个问题似乎有很多种求法,但感觉上第二类Strling数的做法是最方便的. 问题 求下面这个式子: ∑i=0nik\sum_{i=0}^n i^ki=0∑n​ik nnn的范围可以很大. 第二类Str ...

  9. java基础:进制详细介绍,进制快速转换,二维数组详解,循环嵌套应用,杨辉三角实现正倒直角正倒等腰三角,附练习案列

    1.Debug模式 1.1 什么是Debug模式 是供程序员使用的程序调试工具,它可以用于查看程序的执行流程,也可以用于追踪程序执行过程来调试程序. 1.2 Debug介绍与操作流程 如何加断点 选择 ...

随机推荐

  1. [译文]Domain Driven Design Reference(七)—— 大型战略设计结构

    本书是Eric Evans对他自己写的<领域驱动设计-软件核心复杂性应对之道>的一本字典式的参考书,可用于快速查找<领域驱动设计>中的诸多概念及其简明解释. 上周末电脑硬盘文件 ...

  2. QEMU KVM Libvirt手册(10):Managing Virtual Machines with libvirt

    libvirt is a library that provides a common API for managing popular virtualization solutions, among ...

  3. emWin监护仪界面设计,含uCOS-III和FreeRTOS两个版本

    第5期:监护仪界面设计 配套例子:V6-908_STemWin提高篇实验_监护仪界面设计(uCOS-III)V6-909_STemWin提高篇实验_监护仪界面设计(FreeRTOS) 例程下载地址:h ...

  4. FFmpeg 结构体学习(四): AVFrame 分析

    在上文FFmpeg 结构体学习(三): AVPacket 分析我们学习了AVPacket结构体的相关内容.本文,我们将讲述一下AVFrame. AVFrame是包含码流参数较多的结构体.下面我们来分析 ...

  5. [Swift]LeetCode251.展平二维向量 $ Flatten 2D Vector

    Implement an iterator to flatten a 2d vector. For example,Given 2d vector = [ [1,2], [3], [4,5,6] ] ...

  6. [Swift]LeetCode566. 重塑矩阵 | Reshape the Matrix

    In MATLAB, there is a very useful function called 'reshape', which can reshape a matrix into a new o ...

  7. [Swift]LeetCode935. 骑士拨号器 | Knight Dialer

    A chess knight can move as indicated in the chess diagram below:  .            This time, we place o ...

  8. Python——day12 nonlcoal关键字、装饰器(开放封闭原则、函数被装饰、最终写法)

    一.nonlocal关键字 1.作用:将L与E(E中的名字需要提前定义)的名字统一 2.应用场景:如果想在被嵌套的函数中修改外部函数变量(名字)的值 def outer(): num=10 print ...

  9. Zookeeper知识点

    Zookeeper是一个分布式协调服务 Zookeeper服务器的角色 Leader: 所有的写操作必须要经过Leader完成,在广播给其它服务器.心跳检测.集群中只有一个Leader. Follow ...

  10. 用Maxima画出一些有趣的图

    Maxima可以画出Chaos.Duffing .Fern.Lorenz.Rossler .Portraits .Mandelbrot.Staircase.Triangles等有趣的图... Chao ...