\(i^2\)求和

老祖宗告诉我们\(\sum_{i=1}^n i^2 = \frac{n(n+1)(2n+1)}{6}\)

但是这玩意儿是怎么出来的呢?感觉网上用立方差证明的思路太low了,今天偶然间在Miskcoo大佬的博客中看到了一种脑洞清奇通俗易懂的证明方法

我们要求的是\(S_n = \sum_{i=1}^n i^2\),现在我们对\(C_n = \sum_{i=1}^n i^3\)来进行"扰动"。

首先列一个恒等式

\[\sum_{i=1}^{n+1} i^3 = C_n + (n+1)^3\]

这里有个骚操作是把前面的转化一下

\[\sum_{i=0}^n (i+1)^3 = C_n + (n+1)^3\]

然后就可以推柿子啦。

\[
\begin{aligned}
\sum_{i=0}^n i^3 + 3i^2 + 3i + 1 &= C_n + (n+1)^3\\
C_n + 3S_n + 3\frac{n(n+1)}{2} + (n+1)&= C_n + (n+1)^3\\
\end{aligned}
\]

\[
\begin{aligned}
\Rightarrow S_n &= \frac{2(n+1)^3 - 3n(n+1)-2(n+1)}{6}\\
&=\frac{n(2n + 1)(n+1)}{6}
\end{aligned}
\]

同时这个方法具有非常强的扩展性,我们也可以推导出\(i^k\)的公式,但是计算起来的复杂度却是\(k^2\)的,感觉还是拉格朗日插值\(k \log k\)好用一些

参考资料

幂和

i的二次幂求和的更多相关文章

  1. hdu 5690 2016"百度之星" - 初赛(Astar Round2A) All X 快速二次幂 || 寻找周期

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5690 题意:m个数字全为x mod k ?= c;其中m <= 1010,0 < c,k ...

  2. Codeforces 988D Points and Powers of Two ( 思维 || 二的幂特点 )

    题目链接 题意 : 给出坐标轴上的 n 个点的横坐标,要你选出最多的点,使得这些点两两距离是二的幂 ( 特殊情况 : 选出的集合只有一个点也满足条件 ) 分析 : 官方题解已经说的很好了 最关键是是判 ...

  3. RSA简介(二)——模幂算法

    RSA最终加密.解密都要用到模乘的幂运算,简称模幂运算. 回忆一下RSA,从明文A到B B=Ae1%N 对B解密,就是 A=Be2%N 其中,一般来说,加密公钥中的e1一般会比较小,取65537居多, ...

  4. FZU_1683 矩阵快速幂 求和

    这个题目确实是很简单的一个矩阵快速幂,但是我在求和的时候,用的是标准的求和,即,一共计算logN次Ak,但是这样会超时. 后来就发现原来本身和Sn=Sn-1+Fn:即Sn本身可以写在矩阵当中,所以直接 ...

  5. 【日常学习】【搜索/递归】codevs2802 二的幂次方题解

    转载请注明出处 [ametake版权全部]http://blog.csdn.net/ametake欢迎来看 题目描写叙述 Description 不论什么一个正整数都能够用2的幂次方表示. 比如:13 ...

  6. AcWing 225. 矩阵幂求和 (矩阵快速幂+分治)打卡

    题目:https://www.acwing.com/problem/content/227/ 题意:给你n,k,m,然后输入一个n阶矩阵A,让你求  S=A+A^2+A^3.+......+A^k 思 ...

  7. [leetcode]304. Range Sum Query 2D - Immutable二维区间求和 - 不变

    Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper lef ...

  8. 自然数幂求和——第二类Strling数

    这个问题似乎有很多种求法,但感觉上第二类Strling数的做法是最方便的. 问题 求下面这个式子: ∑i=0nik\sum_{i=0}^n i^ki=0∑n​ik nnn的范围可以很大. 第二类Str ...

  9. java基础:进制详细介绍,进制快速转换,二维数组详解,循环嵌套应用,杨辉三角实现正倒直角正倒等腰三角,附练习案列

    1.Debug模式 1.1 什么是Debug模式 是供程序员使用的程序调试工具,它可以用于查看程序的执行流程,也可以用于追踪程序执行过程来调试程序. 1.2 Debug介绍与操作流程 如何加断点 选择 ...

随机推荐

  1. 构建一个 预装 pm2 的 node 项目 docker 底包

    Dockerfile: 创建 dockerfile 文件, 命名为 dockerfile-yourProject-node.8.12.0-pm2 # MAGE: yourGroup/yourProje ...

  2. 版本号严格遵守semver语义化标准

    地址:http://semver.org/lang/zh-CN/?spm=a219a.7629140.0.0.GUJMXE 语义化版本 2.0.0 摘要 版本格式:主版本号.次版本号.修订号,版本号递 ...

  3. FFmpeg开发实战(五):FFmpeg 抽取音视频的视频数据

    如何使用FFmpeg抽取音视频的视频数据,代码如下: // FFmpegTest.cpp : 此文件包含 "main" 函数.程序执行将在此处开始并结束. // #include ...

  4. [Swift]LeetCode648. 单词替换 | Replace Words

    In English, we have a concept called root, which can be followed by some other words to form another ...

  5. [Swift]LeetCode863. 二叉树中所有距离为 K 的结点 | All Nodes Distance K in Binary Tree

    We are given a binary tree (with root node root), a targetnode, and an integer value K. Return a lis ...

  6. VSCode与Deepin资源管理器冲突

    解决方式: xdg-mime default dde-file-manager.desktop inode/directory 此外,网上有较多推荐(在deepin 15.8版本上测试无效): gvf ...

  7. Linux清空文件内容

    日志文件太多,需要清空: echo "" > mylog.log

  8. Python内置函数(42)——memoryview

    英文文档: class memoryview(obj) memoryview objects allow Python code to access the internal data of an o ...

  9. JVM基础系列第4讲:从源代码到机器码,发生了什么?

    在上篇文章我们聊到,无论什么语言写的代码,其到最后都是通过机器码运行的,无一例外.那么对于 Java 语言来说,其从源代码到机器码,这中间到底发生了什么呢?这就是今天我们要聊的. 如下图所示,编译器可 ...

  10. Django2.1.2创建默认管理后台

    1.在app的models.py中添加以下代码: from django.db import models # Create your models here. # Register your mod ...