\(i^2\)求和

老祖宗告诉我们\(\sum_{i=1}^n i^2 = \frac{n(n+1)(2n+1)}{6}\)

但是这玩意儿是怎么出来的呢?感觉网上用立方差证明的思路太low了,今天偶然间在Miskcoo大佬的博客中看到了一种脑洞清奇通俗易懂的证明方法

我们要求的是\(S_n = \sum_{i=1}^n i^2\),现在我们对\(C_n = \sum_{i=1}^n i^3\)来进行"扰动"。

首先列一个恒等式

\[\sum_{i=1}^{n+1} i^3 = C_n + (n+1)^3\]

这里有个骚操作是把前面的转化一下

\[\sum_{i=0}^n (i+1)^3 = C_n + (n+1)^3\]

然后就可以推柿子啦。

\[
\begin{aligned}
\sum_{i=0}^n i^3 + 3i^2 + 3i + 1 &= C_n + (n+1)^3\\
C_n + 3S_n + 3\frac{n(n+1)}{2} + (n+1)&= C_n + (n+1)^3\\
\end{aligned}
\]

\[
\begin{aligned}
\Rightarrow S_n &= \frac{2(n+1)^3 - 3n(n+1)-2(n+1)}{6}\\
&=\frac{n(2n + 1)(n+1)}{6}
\end{aligned}
\]

同时这个方法具有非常强的扩展性,我们也可以推导出\(i^k\)的公式,但是计算起来的复杂度却是\(k^2\)的,感觉还是拉格朗日插值\(k \log k\)好用一些

参考资料

幂和

i的二次幂求和的更多相关文章

  1. hdu 5690 2016"百度之星" - 初赛(Astar Round2A) All X 快速二次幂 || 寻找周期

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5690 题意:m个数字全为x mod k ?= c;其中m <= 1010,0 < c,k ...

  2. Codeforces 988D Points and Powers of Two ( 思维 || 二的幂特点 )

    题目链接 题意 : 给出坐标轴上的 n 个点的横坐标,要你选出最多的点,使得这些点两两距离是二的幂 ( 特殊情况 : 选出的集合只有一个点也满足条件 ) 分析 : 官方题解已经说的很好了 最关键是是判 ...

  3. RSA简介(二)——模幂算法

    RSA最终加密.解密都要用到模乘的幂运算,简称模幂运算. 回忆一下RSA,从明文A到B B=Ae1%N 对B解密,就是 A=Be2%N 其中,一般来说,加密公钥中的e1一般会比较小,取65537居多, ...

  4. FZU_1683 矩阵快速幂 求和

    这个题目确实是很简单的一个矩阵快速幂,但是我在求和的时候,用的是标准的求和,即,一共计算logN次Ak,但是这样会超时. 后来就发现原来本身和Sn=Sn-1+Fn:即Sn本身可以写在矩阵当中,所以直接 ...

  5. 【日常学习】【搜索/递归】codevs2802 二的幂次方题解

    转载请注明出处 [ametake版权全部]http://blog.csdn.net/ametake欢迎来看 题目描写叙述 Description 不论什么一个正整数都能够用2的幂次方表示. 比如:13 ...

  6. AcWing 225. 矩阵幂求和 (矩阵快速幂+分治)打卡

    题目:https://www.acwing.com/problem/content/227/ 题意:给你n,k,m,然后输入一个n阶矩阵A,让你求  S=A+A^2+A^3.+......+A^k 思 ...

  7. [leetcode]304. Range Sum Query 2D - Immutable二维区间求和 - 不变

    Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper lef ...

  8. 自然数幂求和——第二类Strling数

    这个问题似乎有很多种求法,但感觉上第二类Strling数的做法是最方便的. 问题 求下面这个式子: ∑i=0nik\sum_{i=0}^n i^ki=0∑n​ik nnn的范围可以很大. 第二类Str ...

  9. java基础:进制详细介绍,进制快速转换,二维数组详解,循环嵌套应用,杨辉三角实现正倒直角正倒等腰三角,附练习案列

    1.Debug模式 1.1 什么是Debug模式 是供程序员使用的程序调试工具,它可以用于查看程序的执行流程,也可以用于追踪程序执行过程来调试程序. 1.2 Debug介绍与操作流程 如何加断点 选择 ...

随机推荐

  1. 算法与数据结构(三) 二叉树的遍历及其线索化(Swift版)

    前面两篇博客介绍了线性表的顺序存储与链式存储以及对应的操作,并且还聊了栈与队列的相关内容.本篇博客我们就继续聊数据结构的相关东西,并且所涉及的相关Demo依然使用面向对象语言Swift来表示.本篇博客 ...

  2. 如何利用GitHub搜索敏感信息

    如何利用GitHub搜索敏感信息 背景: 最近总是能听到同事说在GitHub上搜到某个敏感信息,然后利用该信息成功的检测并发现某个漏洞,最后提交到对应的SRC(安全应急响应中心)换点money.顿时心 ...

  3. [Swift]LeetCode528. 按权重随机选择 | Random Pick with Weight

    Given an array w of positive integers, where w[i] describes the weight of index i, write a function  ...

  4. [Swift]LeetCode836. 矩形重叠 | Rectangle Overlap

    A rectangle is represented as a list [x1, y1, x2, y2], where (x1, y1) are the coordinates of its bot ...

  5. [Swift]LeetCode949. 给定数字能组成的最大时间 | Largest Time for Given Digits

    Given an array of 4 digits, return the largest 24 hour time that can be made. The smallest 24 hour t ...

  6. kubernetes---kubectl 管理集群资源

    由于我现在的集群是把虚拟机的master文件直接拷贝过来的,所以之前的node节点是不存在的,只有k8s-ubuntu-1是新加入的,所以我要把上面之前创建的资源删除 删除deployment--&g ...

  7. 机器学习基石笔记:Homework #1 PLA&PA相关习题

    原文地址:http://www.jianshu.com/p/5b4a64874650 问题描述 程序实现 # coding: utf-8 import numpy as np import matpl ...

  8. 参数验证 @Validated 和 @Valid 的区别

    来源:blog.csdn.net/qq_27680317/article/details/79970590 整编:Java技术栈(公众号ID:javastack) Spring Validation验 ...

  9. Android-线程池下载多个图片并保存,如果本地有该图,则不下载,直接展示到view

    做了个工具方法,用来下载图片,如果本地有这个图,则不下载,直接展示到view setHP()方法可以多次使用,因为使用了线程池,所以是个异步操作,如果使用的多,建议根据需要增加线程池的线程数量 看代码 ...

  10. Hive篇---Hive与Hbase整合

     一.前述 Hive会经常和Hbase结合使用,把Hbase作为Hive的存储路径,所以Hive整合Hbase尤其重要. 二.具体步骤 hive和hbase同步https://cwiki.apache ...