package action;

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.VoidFunction;
import scala.Tuple2; import java.util.Arrays;
import java.util.List;
import java.util.Map; /**
* TODO
*
* @ClassName: actions
* @author: DingH
* @since: 2019/4/2 10:53
*/
public class actions {
public static void main(String[] args) {
SparkConf conf = new SparkConf().setAppName("actions").setMaster("local");
JavaSparkContext sc = new JavaSparkContext(conf); JavaRDD<Integer> parallelize = sc.parallelize(Arrays.asList(1, 2, 3, 4, 5)); JavaPairRDD<String, Integer> rdd = sc.parallelizePairs(Arrays.asList(
new Tuple2<String, Integer>("aaaa", 111),
new Tuple2<String, Integer>("aaaa", 111),
new Tuple2<String, Integer>("bbbb", 222),
new Tuple2<String, Integer>("bbbb", 222),
new Tuple2<String, Integer>("bbbb", 222),
new Tuple2<String, Integer>("ccc", 333)
)); JavaPairRDD<String, Integer> rdd1 = rdd.reduceByKey(new Function2<Integer, Integer, Integer>() {
public Integer call(Integer integer, Integer integer2) throws Exception {
return integer + integer2;
}
}); Tuple2<String, Integer> reduce = rdd1.reduce(new Function2<Tuple2<String, Integer>, Tuple2<String, Integer>, Tuple2<String, Integer>>() {
public Tuple2<String, Integer> call(Tuple2<String, Integer> stringIntegerTuple2, Tuple2<String, Integer> stringIntegerTuple22) throws Exception {
Tuple2<String, Integer> stringIntegerTuple21 = new Tuple2<String, Integer>(stringIntegerTuple2._1 + stringIntegerTuple22._1, stringIntegerTuple2._2 + stringIntegerTuple22._2); return stringIntegerTuple21;
}
}); System.out.println(reduce); List<Tuple2<String, Integer>> collect = rdd1.collect();
for (Tuple2<String,Integer> tt:collect){
System.out.println(tt);
} long count = rdd1.count(); Tuple2<String, Integer> first = rdd1.first(); List<Tuple2<String, Integer>> take = rdd1.take(4); List<Tuple2<String, Integer>> tuple2s = rdd1.takeSample(false, 3); rdd1.saveAsTextFile(""); Map<String, Object> stringObjectMap = rdd1.countByKey(); rdd1.foreach(new VoidFunction<Tuple2<String, Integer>>() {
public void call(Tuple2<String, Integer> stringIntegerTuple2) throws Exception {
System.out.println(11);
}
}); sc.stop();
}
}

  

spark actions 算子的更多相关文章

  1. [大数据之Spark]——Actions算子操作入门实例

    Actions reduce(func) Aggregate the elements of the dataset using a function func (which takes two ar ...

  2. Spark RDD概念学习系列之Spark的算子的分类(十一)

    Spark的算子的分类 从大方向来说,Spark 算子大致可以分为以下两类: 1)Transformation 变换/转换算子:这种变换并不触发提交作业,完成作业中间过程处理. Transformat ...

  3. Spark操作算子本质-RDD的容错

    Spark操作算子本质-RDD的容错spark模式1.standalone master 资源调度 worker2.yarn resourcemanager 资源调度 nodemanager在一个集群 ...

  4. Spark RDD概念学习系列之Spark的算子的作用(十四)

    Spark的算子的作用 首先,关于spark算子的分类,详细见 http://www.cnblogs.com/zlslch/p/5723857.html 1.Transformation 变换/转换算 ...

  5. Spark RDD算子介绍

    Spark学习笔记总结 01. Spark基础 1. 介绍 Spark可以用于批处理.交互式查询(Spark SQL).实时流处理(Spark Streaming).机器学习(Spark MLlib) ...

  6. 列举spark所有算子

    一.RDD概述      1.什么是RDD           RDD(Resilient Distributed Dataset)叫做弹性分布式数据集,是Spark中最基本的数据抽象,它代表一个不可 ...

  7. Spark常用算子-KeyValue数据类型的算子

    package com.test; import java.util.ArrayList; import java.util.List; import java.util.Map; import or ...

  8. Spark常用算子-value数据类型的算子

    package com.test; import java.util.ArrayList; import java.util.Arrays; import java.util.Iterator; im ...

  9. spark常用算子总结

    算子分为value-transform, key-value-transform, action三种.f是输入给算子的函数,比如lambda x: x**2 常用算子: keys: 取pair rdd ...

随机推荐

  1. socket编程初识

    一.socket 1.socket层 2.socket的理解 写python代码的时候socket就像是一个模块,通过import导入,通过调用模块中的方法建立两个进程之间的连接和通信. Socket ...

  2. 帝国cms打开慢

    发现有个站(http://www.953239.com/)打开很慢,改了php版本后,快了一倍

  3. ubuntu不能联网的问题

    控制面板\网络和 Internet\网络和共享中心-->更改>配器设置-->以太网-->右键属性-->共享-->允许其他网络用户通过此计算机的internet连接来 ...

  4. GroupBox、TextBox、CheckBox、ToolStrip、RichTextBox、Timer控件

    GroupBox:划分窗体区域,内部可以拖放组件 TextBox:可编辑文本框,也可设置为只读 属性:ReadOnly(只读).PasswordChar(密码显示的符号,如*).Multiline(多 ...

  5. maven wrapper使用本地maven

    修改maven-wrapper.properties内容如下: #distributionUrl=https://repo1.maven.org/maven2/org/apache/maven/apa ...

  6. MTD下的Nand驱动

    目录 MTD下的Nand驱动 引入 平台设备资源文件 关键数据结构 平台框架 s3c24xx_nand_probe nand_scan s3c2410_nand_add_partition add_m ...

  7. GO语言系列(五)- 结构体和接口

    结构体(Struct) Go中struct的特点 1. 用来自定义复杂数据结构 2. struct里面可以包含多个字段(属性) 3. struct类型可以定义方法,注意和函数的区分 4. struct ...

  8. 前向分步算法 && AdaBoost算法 && 提升树(GBDT)算法 && XGBoost算法

    1. 提升方法 提升(boosting)方法是一种常用的统计学方法,在分类问题中,它通过逐轮不断改变训练样本的权重,学习多个分类器,并将这些分类器进行线性组合,提高分类的性能 0x1: 提升方法的基本 ...

  9. python之路(1)数据类型

    目录 整型 布尔值 字符串 列表 元组 字典 整型(int) 将字符串转换成整型 num = "123" v = int(num) 2. 将字符串按进制位转换成整型 num = & ...

  10. Elasticsearch 6.4基本操作 - Java版

    1. Elasticsearch Java API有四类client连接方式 TransportClient RestClient Jest Spring Data Elasticsearch 其中T ...