1576

const int mod = 9973;

n = a - a / mod * mod;

a / b = ans;

ans * b = a = a / mod * mod + n;

n = b * ans - a / mod * mod;

n = b * ans + mod * y;

extended_gcd(b, mod, ans, y);

 #define PRON "hdu1576"
#define LL "%lld"
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
typedef long long ll; const int MOD = ; int Tcase; ll extended_gcd(ll a, ll b, ll & x, ll & y){
if (b == ){
x = , y = ;
return a;
} ll d = extended_gcd(b, a % b, x, y);
ll temp = x;
x = y;
y = temp - a / b * y; return d;
} int main(){
#ifndef ONLINE_JUDGE
freopen(PRON ".in", "r", stdin);
#endif ll a, b, x, y; scanf("%d", &Tcase);
while (Tcase --){
scanf(LL LL, &a, &b);
extended_gcd(b, MOD, x, y);
x = ((x * a % MOD) + MOD) % MOD;
printf(LL "\n", x);
}
}

hdu1576

2824

Σphi[i]

 #define PRON "hdu2824"
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
typedef long long ll; const int MAXN = ; int n, m;
ll phi[MAXN + ]; void get_phi(){
memset(phi, , sizeof phi);
phi[] = ;
for (int i = ; i <= MAXN; i ++)
if (!phi[i]){
for (int j = i; j <= MAXN; j += i){
if (!phi[j])
phi[j] = j;
phi[j] = phi[j] / i * (i - );
}
}
} int main(){
#ifndef ONLINE_JUDGE
freopen(PRON ".in", "r", stdin);
#endif get_phi();
for (int i = ; i <= MAXN; i ++)
phi[i] += phi[i - ]; while (scanf("%d %d", &n, &m) == )
cout << phi[m] - phi[n - ] << endl;
}

hdu2824

1573

中国剩余定理的一般形式

 #define PRON "hdu1573"
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
typedef int ll; const int MAXN = + ; int Tcase, _max, n, a[MAXN], b[MAXN]; ll extended_gcd(ll a, ll b, ll & x, ll & y){
if (b == ){
x = , y = ;
return a;
} ll d = extended_gcd(b, a % b, x, y);
ll temp = x;
x = y;
y = temp - a / b * y; return d;
} ll normal_crt(){
ll m1, m2, r1, r2, x, y; //solve N = r1 (mod m1)
// N = r2 (mod m2)
m1 = a[], r1 = b[];
for (int i = ; i < n; i ++){
m2 = a[i], r2 = b[i]; //solve d = x * m1 + y * m2
//(x, y) is the solution to the equation above
//solve c = r2 - r1 = y * m2 - x * m1
//(x0, y0) is the solution to the equation above
//x0 = x * c / d, y0 = x * c / d
ll d = extended_gcd(m1, m2, x, y);
ll c = r2 - r1;
if (c % d)
return ; ll t = m2 / d;
x = (x * c / d % t + t) % t; //r1 is the solution to the equaions from 1st to ith
r1 += m1 * x;
//m1 is the lcm of m1 to mi
m1 *= t;
} if (_max < r1)
return ; //if (x0, y0) is one of the solution
//(x0 + k * m2 / d, y0 - k * m1 / d) (k -> Z) also apply
return (_max - r1) / m1 + - (bool)(r1 == );
} int main(){
#ifndef ONLINE_JUDGE
freopen(PRON ".in", "r", stdin);
#endif scanf("%d", &Tcase);
while (Tcase --){
scanf("%d %d", &_max, &n);
for (int i = ; i < n; i ++)
scanf("%d", a + i);
for (int i = ; i < n; i ++)
scanf("%d", b + i); printf("%d\n", normal_crt());
}
}

1573

1370

中国剩余定理

 #define PRON "hdu1370"
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
typedef int ll; const int MAXN = ;
const int MOD = ; int Tcase, cnt, st, a[MAXN], b[MAXN]; ll extended_gcd(ll a, ll b, ll & x, ll & y){
if (b == ){
x = , y = ;
return a;
} ll d = extended_gcd(b, a % b, x, y);
ll temp = x;
x = y;
y = temp - a / b * y; return d;
} ll inv(ll a, ll n){
ll x, y;
ll d = extended_gcd(a, n, x, y);
return d == ? (x + n) % n : -;
} ll crt(int n){
ll ret = , m = ; for (int i = ; i < n; i ++)
a[i] %= b[i], m *= b[i]; for (int i = ; i < n; i ++)
ret = (ret + a[i] * (m / b[i]) * inv(m / b[i], b[i])) % m; ret -= st;
return ret + MOD * (bool)(ret <= );
} int main(){
#ifndef ONLINE_JUDGE
freopen(PRON ".in", "r", stdin);
#endif cnt = ;
b[] = , b[] = , b[] = ; scanf("%d", &Tcase);
while (scanf("%d %d %d %d", &a[], &a[], &a[], &st) == && !(a[] == - && a[] == - && a[] == -))
printf("Case %d: the next triple peak occurs in %d days.\n", ++ cnt, crt());
}

1370

HDU Math Problems的更多相关文章

  1. hdu some problems in Multi-University Training Contest

    hdu 6103 Kirinriki #include<bits/stdc++.h> using namespace std; int n,m,ans; ]; void doit(int ...

  2. Simple Math Problems

    整理下<算法笔记>,方便查看. 一.最大公约数&最小公倍数 欧几里得定理:设a,b均为正整数,那么gcd(a,b)=gcd(b,a%b). 若,定理就先交换a和b. 注意:0和任意 ...

  3. HDU 1220 Cube(数学,找规律)

    传送门: http://acm.hdu.edu.cn/showproblem.php?pid=1220 Cube Time Limit: 2000/1000 MS (Java/Others)    M ...

  4. hdu 1220 容斥

    http://acm.hdu.edu.cn/showproblem.php?pid=1220 Cube Time Limit: 2000/1000 MS (Java/Others)    Memory ...

  5. HDOJ/HDU 1085 Holding Bin-Laden Captive!(非母函数求解)

    Problem Description We all know that Bin-Laden is a notorious terrorist, and he has disappeared for ...

  6. HDU 1085 Holding Bin-Laden Captive! (母函数)

    Holding Bin-Laden Captive! Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Ja ...

  7. hdu 1085 Holding Bin-Laden Captive!

    Problem Description We all know that Bin-Laden is a notorious terrorist, and he has disappeared for ...

  8. HDU 1085-Holding Bin-Laden Captive!(生成功能)

    Holding Bin-Laden Captive! Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Ja ...

  9. HUST 1555 A Math Homework

    1555 - A Math Homework 时间限制:1秒 内存限制:128兆 338 次提交 131 次通过 题目描述     QKL is a poor and busy guy, and he ...

随机推荐

  1. windows下运行的linux服务器批量管理工具(带UI界面)

    产生背景: 由于做服务器运维方面的工作,需要一人对近千台LINUX服务器进行统一集中的管理,如同时批量对LINUX服务器执行相关的指令.同时批量对LINUX服务器upload程序包.同时批量对LINU ...

  2. win8 VB6打开提示MSCOMCTL.ocx未注册

    从xp上复制相应的文件到win8相应的位置,如果是不可以,win8中反注册此控件,再注册此控件

  3. BASE64编码和解码(VC源代码) 并 内存加载 CImage 图像

      BASE64可以用来将binary的字节序列数据编码成ASCII字符序列构成的文本.完整的BASE64定义可见 RFC1421和 RFC2045.编码后的数据比原始数据略长,为原来的4/3.在电子 ...

  4. cf730e

    一道数学题,这篇博客很好:http://blog.csdn.net/morejarphone/article/details/52926627(这样应该不算转载吧) 总结:做这类题目显然应该直接根据相 ...

  5. MyBatis复习【简单配置CRUD】

    这里的案例集成了log4j的日志框架,项目架构: 用到的jar文件 添加配置文件:mybatis-config.xml  和dao层配置文件StudentDao.xml 这里书写了个简单的案例仅为了说 ...

  6. 初学c# -- 学习笔记(二)

    接着前面的学习,对话建立了,下面就写对话框气泡,和微信的差不多那种.尖角对话气泡网上一堆,圆尖角的修改了一个.IE8以下不能用,其他都可以用,直接上html代码,将<style>内容用到你 ...

  7. sql 多行合一行

    sql多行合并成一行 sql server SELECT [activityId], --STUFF( (SELECT ',' + Cast(A.phone AS varchar) FROM aaa ...

  8. Python—函数的参数组合

    参数组合 在Python中定义函数,可以用必选参数.默认参数.可变参数.关键字参数和命名关键字参数,这5种参数都可以组合使用.但是请注意,参数定义的顺序必须是:必选参数.默认参数.可变参数.命名关键字 ...

  9. Struts——(四)异常处理机制

    在通常的情况下,我们得到异常以后,需要将页面导航到一个错误提示的页面,提示错误信息.利用Stuts我们可以采用两种方式处理异常: 1.编程式异常处理 即我们在Action中调用业务逻辑层对象的方法时, ...

  10. 转:union和union all的区别

    Union因为要进行重复值扫描,所以效率低.如果合并没有刻意要删除重复行,那么就使用Union All  两个要联合的SQL语句 字段个数必须一样,而且字段类型要“相容”(一致): 如果我们需要将两个 ...