HDU Math Problems
1576
const int mod = 9973;
n = a - a / mod * mod;
a / b = ans;
ans * b = a = a / mod * mod + n;
n = b * ans - a / mod * mod;
n = b * ans + mod * y;
extended_gcd(b, mod, ans, y);
#define PRON "hdu1576"
#define LL "%lld"
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
typedef long long ll; const int MOD = ; int Tcase; ll extended_gcd(ll a, ll b, ll & x, ll & y){
if (b == ){
x = , y = ;
return a;
} ll d = extended_gcd(b, a % b, x, y);
ll temp = x;
x = y;
y = temp - a / b * y; return d;
} int main(){
#ifndef ONLINE_JUDGE
freopen(PRON ".in", "r", stdin);
#endif ll a, b, x, y; scanf("%d", &Tcase);
while (Tcase --){
scanf(LL LL, &a, &b);
extended_gcd(b, MOD, x, y);
x = ((x * a % MOD) + MOD) % MOD;
printf(LL "\n", x);
}
}
hdu1576
2824
Σphi[i]
#define PRON "hdu2824"
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
typedef long long ll; const int MAXN = ; int n, m;
ll phi[MAXN + ]; void get_phi(){
memset(phi, , sizeof phi);
phi[] = ;
for (int i = ; i <= MAXN; i ++)
if (!phi[i]){
for (int j = i; j <= MAXN; j += i){
if (!phi[j])
phi[j] = j;
phi[j] = phi[j] / i * (i - );
}
}
} int main(){
#ifndef ONLINE_JUDGE
freopen(PRON ".in", "r", stdin);
#endif get_phi();
for (int i = ; i <= MAXN; i ++)
phi[i] += phi[i - ]; while (scanf("%d %d", &n, &m) == )
cout << phi[m] - phi[n - ] << endl;
}
hdu2824
1573
中国剩余定理的一般形式
#define PRON "hdu1573"
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
typedef int ll; const int MAXN = + ; int Tcase, _max, n, a[MAXN], b[MAXN]; ll extended_gcd(ll a, ll b, ll & x, ll & y){
if (b == ){
x = , y = ;
return a;
} ll d = extended_gcd(b, a % b, x, y);
ll temp = x;
x = y;
y = temp - a / b * y; return d;
} ll normal_crt(){
ll m1, m2, r1, r2, x, y; //solve N = r1 (mod m1)
// N = r2 (mod m2)
m1 = a[], r1 = b[];
for (int i = ; i < n; i ++){
m2 = a[i], r2 = b[i]; //solve d = x * m1 + y * m2
//(x, y) is the solution to the equation above
//solve c = r2 - r1 = y * m2 - x * m1
//(x0, y0) is the solution to the equation above
//x0 = x * c / d, y0 = x * c / d
ll d = extended_gcd(m1, m2, x, y);
ll c = r2 - r1;
if (c % d)
return ; ll t = m2 / d;
x = (x * c / d % t + t) % t; //r1 is the solution to the equaions from 1st to ith
r1 += m1 * x;
//m1 is the lcm of m1 to mi
m1 *= t;
} if (_max < r1)
return ; //if (x0, y0) is one of the solution
//(x0 + k * m2 / d, y0 - k * m1 / d) (k -> Z) also apply
return (_max - r1) / m1 + - (bool)(r1 == );
} int main(){
#ifndef ONLINE_JUDGE
freopen(PRON ".in", "r", stdin);
#endif scanf("%d", &Tcase);
while (Tcase --){
scanf("%d %d", &_max, &n);
for (int i = ; i < n; i ++)
scanf("%d", a + i);
for (int i = ; i < n; i ++)
scanf("%d", b + i); printf("%d\n", normal_crt());
}
}
1573
1370
中国剩余定理
#define PRON "hdu1370"
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
typedef int ll; const int MAXN = ;
const int MOD = ; int Tcase, cnt, st, a[MAXN], b[MAXN]; ll extended_gcd(ll a, ll b, ll & x, ll & y){
if (b == ){
x = , y = ;
return a;
} ll d = extended_gcd(b, a % b, x, y);
ll temp = x;
x = y;
y = temp - a / b * y; return d;
} ll inv(ll a, ll n){
ll x, y;
ll d = extended_gcd(a, n, x, y);
return d == ? (x + n) % n : -;
} ll crt(int n){
ll ret = , m = ; for (int i = ; i < n; i ++)
a[i] %= b[i], m *= b[i]; for (int i = ; i < n; i ++)
ret = (ret + a[i] * (m / b[i]) * inv(m / b[i], b[i])) % m; ret -= st;
return ret + MOD * (bool)(ret <= );
} int main(){
#ifndef ONLINE_JUDGE
freopen(PRON ".in", "r", stdin);
#endif cnt = ;
b[] = , b[] = , b[] = ; scanf("%d", &Tcase);
while (scanf("%d %d %d %d", &a[], &a[], &a[], &st) == && !(a[] == - && a[] == - && a[] == -))
printf("Case %d: the next triple peak occurs in %d days.\n", ++ cnt, crt());
}
1370
HDU Math Problems的更多相关文章
- hdu some problems in Multi-University Training Contest
hdu 6103 Kirinriki #include<bits/stdc++.h> using namespace std; int n,m,ans; ]; void doit(int ...
- Simple Math Problems
整理下<算法笔记>,方便查看. 一.最大公约数&最小公倍数 欧几里得定理:设a,b均为正整数,那么gcd(a,b)=gcd(b,a%b). 若,定理就先交换a和b. 注意:0和任意 ...
- HDU 1220 Cube(数学,找规律)
传送门: http://acm.hdu.edu.cn/showproblem.php?pid=1220 Cube Time Limit: 2000/1000 MS (Java/Others) M ...
- hdu 1220 容斥
http://acm.hdu.edu.cn/showproblem.php?pid=1220 Cube Time Limit: 2000/1000 MS (Java/Others) Memory ...
- HDOJ/HDU 1085 Holding Bin-Laden Captive!(非母函数求解)
Problem Description We all know that Bin-Laden is a notorious terrorist, and he has disappeared for ...
- HDU 1085 Holding Bin-Laden Captive! (母函数)
Holding Bin-Laden Captive! Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Ja ...
- hdu 1085 Holding Bin-Laden Captive!
Problem Description We all know that Bin-Laden is a notorious terrorist, and he has disappeared for ...
- HDU 1085-Holding Bin-Laden Captive!(生成功能)
Holding Bin-Laden Captive! Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Ja ...
- HUST 1555 A Math Homework
1555 - A Math Homework 时间限制:1秒 内存限制:128兆 338 次提交 131 次通过 题目描述 QKL is a poor and busy guy, and he ...
随机推荐
- Python 操作FTP
import sys, os, ftplib, socket CONST_HOST = "FTP服务器地址" CONST_USERNAME = "FTP用户名" ...
- 展开、收起div的jQuery代码
<!doctype html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- Java和.NET使用DES对称加密的区别
Java和.NET的系统类库里都有封装DES对称加密的实现方式,但是对外暴露的接口却各不相同,甚至有时会让自己难以解决其中的问题,比如Java加密后的结果在.NET中解密不出来等,由于最近项目有跨Ja ...
- HTML第三天作业做的表格
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xht ...
- spark 获取applicationID
在编写spark 程序时,有时需要获取job id 进行记录. 只需在程序中加入: sc.applicationId res0: String = app-- 每个job提交后, 均有自己的监控页面. ...
- 深受C/C 程序员欢迎的11款IDE
几十年过去了,C和C++作为主要的高级的程序设计语言,在全球范围内仍然广受欢迎,并牢牢占据着TIOBE编程语言排行榜前5名,应用程序和系统的开发离不开这两门语言,现在我们来总结一下近些年来,深受C/C ...
- crontab使用
结合一条命令:0 */4 * * * curl http://xxxx.abc.com/admin.php?s=/Crontab/exec_114study_urltags
- MD5实现32位加密
好记性不如烂笔头,随手记记 附代码 public static void Main(string[] args) { Console.WriteLine("长度为" + UseMd ...
- About Sustainability
我不喜欢人们常说"紧张感", "危机感".这只会让人觉得疲惫,无非是自己拿鞭子抽着自己,最终会觉得难以继续.那么快乐到底从哪里来?成就感到底从哪里来呢? 我更喜 ...
- poj 1384 Piggy-Bank(完全背包)
Piggy-Bank Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 10830 Accepted: 5275 Descr ...