Comparison Between Python ORMs

For each Python ORM presented in this article, we are going to list their pros and cons here:

SQLObject

Pros:

  1. Adopted the easy-to-understand ActiveRecord pattern
  2. A relatively small codebase

Cons:

  1. Naming of methods and classes follow Java's camelCase style
  2. Does not support database sessions to isolate unit of work

Storm

Pros:

  1. A clean and lightweight API leading to short learning curve and long-term maintainability
  2. Does not need special class constructors, nor imperative base classes

Cons:

  1. Forcing the programmer to write manual table-creation DDL statements instead of automatically deriving it from the model class
  2. Contributors of Storm have to give their contributions' copyrights to Canonical Ltd.

Django's ORM

Pros:

  1. Easy-to-use with a short learning curve
  2. Tightly integrated with Django to make it the de-factor standard when dealing with databases in Django

Cons:

  1. Does not handle complex queries very well; forcing the developer to go back to raw SQL
  2. Tightly integrated with Django; making it hard to use outside of a Django context

peewee

Pros:

  1. A Django-ish API; making it easy-to-use
  2. A lightweight implementation; making it easy to integrate with any web framework

Cons:

  1. Does not support automatic schema migrations
  2. Many-to-Many queries are not intuitive to write

SQLAlchemy

Pros:

  1. Enterprise-level APIs; making the code robust and adaptable
  2. Flexible design; making it painless to write complex queries

Cons:

  1. The Unit-of-work concept is not common
  2. A heavyweight API; leading to a long learning curve

PonyORM

Pros:

  1. A very convenient syntax for writing queries
  2. Automatic query optimization
  3. Simplified setup and usage

Cons:

  1. Not designed to process hundreds of thousands or millions of records simultaneously

Summary and Tips

Compared to other ORMs, SQLAlchemy stands out in its focus on the unit-of-work concept which is prevalent whenever you write SQLAlchemy code. The DBSession concept might be hard to understand and use correctly initially, but later you will appreciate the additional complexity which reduces accidental database commit-timing-related bugs to almost zero. Dealing with multiple databases in SQLAlchemy can be tricky since each DB session is confined to one database connection. However, this kind of limitation is actually a good thing since it forces you to think hard about the interaction between multiple databases and make it easier to debug database interaction code.

In the future articles, we are going to fully explore more advanced use cases of SQLAlchemy to truly grasp its immensely powerful APIs.

Python’s SQLAlchemy vs Other ORMs[转发 7] 比较结论的更多相关文章

  1. Python’s SQLAlchemy vs Other ORMs[转发 6]SQLAlchemy

    SQLAlchemy SQLAlchemy is an open source SQL toolkit and ORM for the Python programming language rele ...

  2. Python’s SQLAlchemy vs Other ORMs[转发 0]

    原文地址:http://pythoncentral.io/sqlalchemy-vs-orms/ Overview of Python ORMs As a wonderful language, Py ...

  3. Python’s SQLAlchemy vs Other ORMs[转发 3]Django's ORM

    Django's ORM Django is a free and open source web application framework whose ORM is built tightly i ...

  4. Python’s SQLAlchemy vs Other ORMs[转发 2]Storm

    Storm Storm is a Python ORM that maps objects between one or more databases and Python. It allows de ...

  5. Python’s SQLAlchemy vs Other ORMs[转发 1]SQLObject

    SQLObject SQLObject is a Python ORM that maps objects between a SQL database and Python. It is becom ...

  6. Python’s SQLAlchemy vs Other ORMs[转发 4]peewee

    peewee peewee is a small, expressive ORM. Compared to other ORMs, peewee focuses on the principal of ...

  7. Python’s SQLAlchemy vs Other ORMs[转发 5] PonyORM

    PonyORM PonyORM allows you to query the database using Python generators. These generators are trans ...

  8. 基于Python的SQLAlchemy的操作

    安装 在Python使用SQLAlchemy的首要前提是安装相应的模块,当然作为python的优势,可以到python安装目录下的scripts下,同时按住shift+加上鼠标左键,从而在菜单中打开命 ...

  9. SQLAlchemy(1) -- Python的SQLAlchemy和ORM

    Python的SQLAlchemy和ORM(object-relational mapping:对象关系映射) web编程中有一项常规任务就是创建一个有效的后台数据库.以前,程序员是通过写sql语句, ...

随机推荐

  1. exp_tools

    #pwntools # github https://github.com/Gallopsled/pwntools 在线帮助文档 https://docs.pwntools.com/en/stable ...

  2. ACL权限设置命令setfacl和getfacl命令

    ACL权限设置命令setfacl和getfacl命令 setfacl命令是用来在命令行里设置ACL(访问控制列表).在命令行里,一系列的命令跟随以一系列的文件名. [TOC] 选项 |参数|说明|   ...

  3. 如何利用【DataTable】结合自己本地数据库,使用表格

    如何利用[DataTable]结合自己本地数据库,使用表格我们都知道DataTable的使用与配置,平时我们都是用一个json文件来代替后台,但是实际上我们在与后台交互的时候,后台先取到数据库里面的信 ...

  4. 20161014001 DataGridView 单元格内容 自动计算

    private void T_Form_CY_CBD_D_CellValueChanged(object sender, DataGridViewCellEventArgs e)        {   ...

  5. Pro Git 第一章 起步 读书笔记

    Pro Git 笔记 第1章 起步 1.文件的三种状态. 已提交:文件已经保存在本地数据库中了.(commit) 已修改:修改了某个文件,但还没有提交保存.(vim) 已暂存:已经把已修改的文件放在下 ...

  6. 课堂 一些代码的叫法 JavaScript js

    ():圆括号 {} :花括号 <>:尖括号 [] :方括号

  7. Java Bean Validation 最佳实践

    参数校验是我们程序开发中必不可少的过程.用户在前端页面上填写表单时,前端js程序会校验参数的合法性,当数据到了后端,为了防止恶意操作,保持程序的健壮性,后端同样需要对数据进行校验.后端参数校验最简单的 ...

  8. 安装AdventureWorks2008R2

    在微软的网站,有介绍安装示例数据库AdventureWorks的说明. 你可以在这里下载到压缩包 (AdventureWorks2008R2_Database.zip),解压后会得到两个文件: Adv ...

  9. Android first --- 单元测试框架junit

    #单元测试junit* 定义一个类继承AndroidTestCase,在类中定义方法,即可测试该方法 * 在指定指令集时,targetPackage指定你要测试的应用的包名 <instrumen ...

  10. HDU 1525 Euclid's Game 博弈

    Euclid's Game Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Tot ...