Crowd Control
我的图论还是只会套模板 嘤嘤嘤
题目描述
The BAPC draws a large number of visitors to Amsterdam. Many of these people arrive at the train station, then walk from intersection to intersection through the streets of Amsterdam in a big parade until they reach the BAPC location.
A street can only allow a certain number of people per hour to pass through. This is called the capacity of the street. The number of people going through a street must never exceed its capacity, otherwise accidents will happen. People may walk through a street in either direction.
The BAPC organizers want to prepare a single path from train station to BAPC location. They choose the path with maximum capacity, where the capacity of a path is defined to be the minimum capacity of any street on the path. To make sure that nobody walks the wrong way, the organizers close down the streets which are incident
1 to an intersection on the path,but not part of the path.
Can you write a program to help the organizers decide which streets to block? Given a graph of the streets and intersections of Amsterdam, produce the list of streets that need to be closed down in order to create a single maximum-capacity path from the train station to the BAPC. The path must be simple, i.e. it may not visit any intersection more than once.
输入
• The first line contains two integers: n, the number of intersections in the city, and m,the number of streets (1 ≤ n, m ≤ 1000).
• The following m lines each specify a single street. A street is specified by three integers, ai, bi and ci, where ai and bi are ids of the two intersections that are connected by this street (0 ≤ ai, bi < n) and ci is the capacity of this street (1 ≤ ci ≤ 500000). Streets are numbered from 0 to m − 1 in the given order.
You may assume the following:
• All visitors start walking at the train station which is the intersection with id 0. The BAPC is located at the intersection with id n − 1.
• The intersections and streets form a connected graph.
• No two streets connect the same pair of intersections.
• No street leads back to the same intersection on both ends.
• There is a unique simple path of maximum capacity.
输出
Output a single line containing a list of space separated street numbers that need to be blocked in order to create a single maximum-capacity path from train station to BAPC. Sort these street numbers in increasing order.
If no street must be blocked, output the word “none” instead.

样例输入
7 10
0 1 800
1 2 300
2 3 75
3 4 80
4 5 50
4 6 100
6 1 35
0 6 10
0 2 120
0 3 100
样例输出
0 2 4 6 7 8
审题!不要看到流量就差点把网络流模板套上去了!
首先思考怎样才能使流量最大呢?就要让这条路上最小的边最大,然后就想到最大生成树。
审题!为什么1 2不用封,因为他不想让人走岔路,所以正确道路上的所有岔路都要封住,其他不用管。找到正确道路了怎么办?用一个bfs标记每个点的父亲,然后再用dfs从汇点开始向上找源点,于是就找到了这条道路的点。然后再判断边是否与该点相连。
#include<bits/stdc++.h>
typedef long long ll;
using namespace std;
const int maxn=1010;
int N,M;
int fa[maxn];
int dist[maxn][maxn];
struct edge
{
int u,v,w,id;
edge(int u=0,int v=0,int w=0):u(u),v(v),w(w){}
}e[maxn];
int getfather(int x)
{
if(x==fa[x]) return x;
else return fa[x]=getfather(fa[x]);
}
bool cmp(edge x,edge y)
{
return x.w>y.w;
}
void kruscal()
{
sort(e,e+M,cmp);
int cnt=0;
for(int i=0;i<N;i++){
fa[i]=i;
}
for(int i=0;i<M;i++){
int t1=getfather(e[i].u);
int t2=getfather(e[i].v);
if(t1!=t2){
fa[t1]=t2;
dist[e[i].u][e[i].v]=dist[e[i].v][e[i].u]=e[i].w;
cnt++;
}
if(cnt==N-1) break;
}
return ;
}
bool vis[maxn];
int d[maxn];
int ans[maxn][maxn];
bool selct[maxn];
bool del[maxn];
queue<int>q;
void bfs(int u)
{
q.push(u);
vis[u]=true;
while(!q.empty()){
u=q.front();
q.pop();
for(int i=0;i<N;i++){
if(!vis[i]&&dist[u][i]>0){
d[i]=u;
vis[i]=true;
q.push(i);
}
}
}
}
void dfs(int u){
int v=d[u];
del[u]=1;
if(v==0){
ans[0][u]=1;
ans[u][0]=1;
del[0]=1;
return;
}
else{
ans[v][u]=1;
ans[u][v]=1;
dfs(v);
}
return;
}
int main()
{
int u,v,w;
//freopen("in.txt","r",stdin);
scanf("%d%d",&N,&M);
for(int i=0;i<M;i++){
scanf("%d%d%d",&u,&v,&w);
edge k(u,v,w);
k.id=i;
e[i]=k;
}
kruscal();
bfs(0);
dfs(N-1);
bool flag=0;
//for(int i=0;i<N;i++) cout<<del[i]<<" ";
//cout<<endl;
for(int i=0;i<M;i++){
if(del[e[i].u]||del[e[i].v])
if(ans[e[i].u][e[i].v]==0){
selct[e[i].id]=true;
flag=1;
}
}
if(flag)
for(int i=0;i<M;i++){
if(selct[i]){
printf("%d ",i);
}
}
else{
printf("none");
}
printf("\n");
//fclose(stdin);
return 0;
}
Crowd Control的更多相关文章
- Crowd Control(输出不在最大值最小化的最短路上的边)
题意: 就是求完最大值最小化 然后输出在这条最大值最小化的最短路上的点的不在最短路上的边,emm.... 解析: 很明显,先套spfa最大值最小化模板,emm... 在更新d的时候 用一个pre去记 ...
- BAPC2017
Benelux Algorithm Programming Contest 2017 参考资料: https://blog.csdn.net/sizaif/article/details/798586 ...
- Atlassian 系列软件安装(Crowd+JIRA+Confluence+Bitbucket+Bamboo)
公司使用的软件开发和协作工具为 Atlassian 系列软件,近期需要从腾讯云迁移到阿里云环境,简单记录下安装和配置过程.(Atlassian 的文档非常详尽,过程中碰见的问题都可以找到解决办法.) ...
- 企业管理软件开发架构之七 Object Control设计与运用
在做查询时,经常遇到一类需求.请看下面的SQL语句查询 SELECT * FROM Company WHERE CompanyCode='Kingston' AND Suspended='N' AND ...
- 文字处理控件TX Text Control的使用
这几天一直在研究TX Text Control的使用,由于这方面的资料相对比较少,主要靠下载版本的案例代码进行研究,以及官方的一些博客案例进行学习,使用总结了一些心得,特将其总结出来,供大家分享学习. ...
- Sublime text 2/3 中 Package Control 的安装与使用方法
Package Control 插件是一个方便 Sublime text 管理插件的插件,但因为 Sublime Text 3 更新了 Python 的函数,API不同了,导致基于 Python 开发 ...
- Java 性能分析工具 , 第 3 部分: Java Mission Control
引言 本文为 Java 性能分析工具系列文章第三篇,这里将介绍如何使用 Java 任务控制器 Java Mission Control 深入分析 Java 应用程序的性能,为程序开发人员在使用 Jav ...
- Job for httpd.service failed because the control process exited with error code. See "systemctl status httpd.service" and "journalctl -xe" for details
thinkphp 在Apache上配置启用伪静态,重启Apache1 restart 竟然失败了,报错 Job for httpd.service failed because the control ...
- Neural Pathways of Interaction Mediating the Central Control of Autonomic Bodily State 自主神经系统-大脑调节神经通路
Figure above: Critchley H D, Harrison N A. Visceral influences on brain and behavior[J]. Neuron, 201 ...
随机推荐
- CSS属性之float浮动属性
float 属性定义元素在哪个方向浮动.以往这个属性总应用于图像,使文本围绕在图像周围,不过在 CSS 中,任何元素都可以浮动.浮动元素会生成一个块级框,而不论它本身是何种元素. float有四个属性 ...
- PTA天梯赛L2
L2-001 紧急救援 题意:就是给你一张n<500的图:让你求最短路径,最短路条数,以及路径: 做法,先用dijkstra求最短路,然后dfs找最短路条数,以及点权的最大值: 一般dfs不就可 ...
- 组件state
一.设计合适的state 1.1 定义: state代表一个组件UI呈现的完整状态 stae代表一个组件UI呈现的最小状态集[所有状态都用于组件UI的变化,没有任何多余的状态] 1.2 state和p ...
- ubuntu16+caffe fast-rcnnCPU运行步骤
//////////////////////////////////////////////////////////////////////////////////////////////////// ...
- nginx log 切割
/logs/nginx/*/*access.log { daily rotate 30 missingok dateext #compress notifempty sharedscripts pos ...
- 9 react 基础 - 虚拟DOM
一.虚拟DOM React 原理 1. 存放 state 数据 2. JSX 模版 3. 数据 + 模版 生成虚拟DOM(虚拟DOM就是一个JS 对象, 用来描述真实DOM) eg: ['div', ...
- 分布式CAP定理(转)
在弄清楚这个问题之前,我们先了解一下什么是分布式的CAP定理. 根据百度百科的定义,CAP定理又称CAP原则,指的是在一个分布式系统中,Consistency(一致性). Availability(可 ...
- .pcd格式点云文件的显示
利用pcl_viewer工具pcl_viewer rtabmap_cloud.pcd
- Delphi7 流操作_压缩
unit Unit1; interface uses Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms ...
- P1618 三连击(升级版)
题解: #include<stdio.h>int main(){ int A,B,C; scanf("%d %d %d",&A,&B,&C); ...