图像处理和分析通常被看作是对二维值数组的操作。然而,在一些领域中,必须对高维数的图像进行处理分析,例如,医学成像和生物成像。由于对多维特性的良好支持,numpy非常适合这种类型的应用程序。scipy.ndimage包提供了许多通用的图像处理和分析功能,这些功能支持操作任意维度的数组。

scipy.ndimage中提供了图像矩阵变换、图像滤波、图像卷积等功能。

旋转图片

旋转图片,可以使用ndimage.rotate函数。

测试图片下载: face.png

示例

加载原图片

from scipy import ndimage
import matplotlib.image as mpimg
import matplotlib.pyplot as plt # 加载图片
face = mpimg.imread('./face.png') # 显示图片
plt.imshow(face)
# plt.savefig('./img2-1.png') # 保存要显示的图片
plt.show()

输出

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-NTwDVFBg-1571731533309)(https://www.qikegu.com/wp-content/uploads/2019/06/img2-1.png)]

示例

from scipy import ndimage
import matplotlib.image as mpimg
import matplotlib.pyplot as plt # 加载图片
face = mpimg.imread('./face.png') # 旋转图片
rotate_face = ndimage.rotate(face, 45) plt.imshow(rotate_face)
# plt.savefig('./img3-1.png') # 保存要显示的图片
plt.show()

输出

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-roYeWLno-1571731533312)(https://www.qikegu.com/wp-content/uploads/2019/06/img3-1.png)]

图像滤波

图像滤波是一种修改/增强图像的技术。例如,可以通过图像滤波突出图像的某些特性,弱化或滤除图像的另一些特性。滤波有很多种,例如:平滑、锐化、边缘增强等等。

示例

对图像进行高斯滤波。高斯滤波是一种模糊滤波,广泛用于滤除图像噪声。

from scipy import ndimage
import matplotlib.image as mpimg
import matplotlib.pyplot as plt # 加载图片
face = mpimg.imread('./face.png') # 处理图片
face1 = ndimage.gaussian_filter(face, sigma=3) # 显示图片
plt.imshow(face1)
# plt.savefig('./img4-1.png') # 保存要显示的图片
plt.show()

输出

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-ri8BeFuk-1571731533317)(https://www.qikegu.com/wp-content/uploads/2019/06/img4-1.png)]

sigma=3表示模糊程度为3,我们可以通过调整sigma值,来比较图像质量的变化。

边缘检测

边缘检测是一种寻找图像中物体边界的图像处理技术。它的原理是通过检测图像中的亮度突变,来识别物体边缘。边缘检测在图像处理、计算机视觉、机器视觉等领域中广泛应用。

常用边缘检测算法包括:

  • Sobel
  • Canny
  • Prewitt
  • Roberts
  • Fuzzy Logic methods

让我们考虑下面的例子。

import scipy.ndimage as nd
import numpy as np im = np.zeros((256, 256))
im[64:-64, 64:-64] = 1
im[90:-90,90:-90] = 2
im = nd.gaussian_filter(im, 8) import matplotlib.pyplot as plt
plt.imshow(im)
# plt.savefig('./img5-1.png') # 保存要显示的图片
plt.show()

上面的程序将生成以下输出。

图像看起来像一个正方形的色块,我们将检测这些彩色块的边缘。这里使用ndimage的Sobel函数来检测图像边缘,该函数会对图像数组的每个轴分开操作,产生两个矩阵,然后我们使用NumPy中的Hypot函数将这两个矩阵合并为一个矩阵,得到最后结果。

示例

import scipy.ndimage as nd
import numpy as np
import matplotlib.pyplot as plt im = np.zeros((256, 256))
im[64:-64, 64:-64] = 1
im[90:-90,90:-90] = 2
im = nd.gaussian_filter(im, 8) sx = nd.sobel(im, axis = 0, mode = 'constant')
sy = nd.sobel(im, axis = 1, mode = 'constant')
sob = np.hypot(sx, sy) plt.imshow(sob)
# plt.savefig('./img6-1.png') # 保存要显示的图片
plt.show()

上面的程序将生成以下输出。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-qc6G227y-1571731533323)(https://www.qikegu.com/wp-content/uploads/2019/06/img6-1.png)]

SciPy 图像处理的更多相关文章

  1. scipy 图像处理-深度学习

    scipy 图像处理(scipy.misc.scipy.ndimage).matplotlib 图像处理 from scipy.misc import imread / imsave / imshow ...

  2. scipy 图像处理(scipy.misc、scipy.ndimage)、matplotlib 图像处理

    from scipy.misc import imread / imsave / imshow imresize / imrotate / imfilter 1. scipy.misc 下的图像处理 ...

  3. SciPy 信号处理

    章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...

  4. SciPy 统计

    章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...

  5. SciPy 线性代数

    章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...

  6. SciPy 优化

    章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...

  7. SciPy 积分

    章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...

  8. SciPy 插值

    章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...

  9. SciPy 输入输出

    章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...

随机推荐

  1. 比较牛X的网站

    数学公式编辑与分享网站:https://www.mathcha.io/editor Markdown编辑网站:https://note.youdao.com/web 在线LaTex公式编辑器:http ...

  2. JMS消息传递的类型

    对于消息的传递有两种类型: 一种是点对点的,即一个生产者和一个消费者一一对应: 另一种是发布/ 订阅模式,即一个生产者产生消息并进行发送后,可以由多个消费者进 行接收.

  3. device supports x86 but apk only supports armeabi-v7a问题解决

    我们可以在build.gradle中有ndk这段代码,只要在后面加上“x86”,再sync now一下,就发现可以运行了. ndk { abiFilters "armeabi-v7a&quo ...

  4. Git三招

    一.Git提交指令 git init git第一次使用在当前文件夹初始化一个git仓库,第二次不需要 git add . 把当前文件夹所有文件添加到缓存区中. 可以选特定的文件夹或文件.将后面的.改变 ...

  5. python 可视化 pyecharts

    github搜索pyecharts https://github.com/pyecharts/pyecharts echarts : https://www.echartsjs.com/zh/inde ...

  6. 神奇的 SQL 之 联表细节 → MySQL JOIN 的执行过程

    问题背景 对于 MySQL 的 JOIN,不知道大家有没有去想过他的执行流程,亦或有没有怀疑过自己的理解(自信满满的自我认为!):如果大家不知道怎么检验,可以试着回答如下的问题 驱动表的选择 MySQ ...

  7. PTA的Python练习题(六)

    从 第3章-8 字符串逆序 开始 1. n = str(input()) n1=n[::-1] print(n1) 2. 不是很好做这道题,自己还是C语言的思维,网上几乎也找不到什么答案 s = in ...

  8. 学习笔记(11)- 文本生成RNNLG

    https://github.com/shawnwun/RNNLG 数据集 给出了4个行业的语料,餐馆.酒店.电脑.电视,及其组合数据. 数据格式 任务 根据给定格式的命令,生成自然语言. 方法.模型 ...

  9. Educational Codeforces Round 73 (Rated for Div. 2)D(DP,思维)

    #define HAVE_STRUCT_TIMESPEC#include<bits/stdc++.h>using namespace std;long long a[300007],b[3 ...

  10. 《容器化.NET应用架构指南》脑图学习笔记(第一部分)

    一.关于这本官方“圣经” 作为.NET程序员,对于微软官方推动的架构示例总是特别关注,从PetShop到MusicStore再到eShopOnContainers,每一次关注,都会了解到业界最新的架构 ...