图像处理和分析通常被看作是对二维值数组的操作。然而,在一些领域中,必须对高维数的图像进行处理分析,例如,医学成像和生物成像。由于对多维特性的良好支持,numpy非常适合这种类型的应用程序。scipy.ndimage包提供了许多通用的图像处理和分析功能,这些功能支持操作任意维度的数组。

scipy.ndimage中提供了图像矩阵变换、图像滤波、图像卷积等功能。

旋转图片

旋转图片,可以使用ndimage.rotate函数。

测试图片下载: face.png

示例

加载原图片

from scipy import ndimage
import matplotlib.image as mpimg
import matplotlib.pyplot as plt # 加载图片
face = mpimg.imread('./face.png') # 显示图片
plt.imshow(face)
# plt.savefig('./img2-1.png') # 保存要显示的图片
plt.show()

输出

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-NTwDVFBg-1571731533309)(https://www.qikegu.com/wp-content/uploads/2019/06/img2-1.png)]

示例

from scipy import ndimage
import matplotlib.image as mpimg
import matplotlib.pyplot as plt # 加载图片
face = mpimg.imread('./face.png') # 旋转图片
rotate_face = ndimage.rotate(face, 45) plt.imshow(rotate_face)
# plt.savefig('./img3-1.png') # 保存要显示的图片
plt.show()

输出

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-roYeWLno-1571731533312)(https://www.qikegu.com/wp-content/uploads/2019/06/img3-1.png)]

图像滤波

图像滤波是一种修改/增强图像的技术。例如,可以通过图像滤波突出图像的某些特性,弱化或滤除图像的另一些特性。滤波有很多种,例如:平滑、锐化、边缘增强等等。

示例

对图像进行高斯滤波。高斯滤波是一种模糊滤波,广泛用于滤除图像噪声。

from scipy import ndimage
import matplotlib.image as mpimg
import matplotlib.pyplot as plt # 加载图片
face = mpimg.imread('./face.png') # 处理图片
face1 = ndimage.gaussian_filter(face, sigma=3) # 显示图片
plt.imshow(face1)
# plt.savefig('./img4-1.png') # 保存要显示的图片
plt.show()

输出

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-ri8BeFuk-1571731533317)(https://www.qikegu.com/wp-content/uploads/2019/06/img4-1.png)]

sigma=3表示模糊程度为3,我们可以通过调整sigma值,来比较图像质量的变化。

边缘检测

边缘检测是一种寻找图像中物体边界的图像处理技术。它的原理是通过检测图像中的亮度突变,来识别物体边缘。边缘检测在图像处理、计算机视觉、机器视觉等领域中广泛应用。

常用边缘检测算法包括:

  • Sobel
  • Canny
  • Prewitt
  • Roberts
  • Fuzzy Logic methods

让我们考虑下面的例子。

import scipy.ndimage as nd
import numpy as np im = np.zeros((256, 256))
im[64:-64, 64:-64] = 1
im[90:-90,90:-90] = 2
im = nd.gaussian_filter(im, 8) import matplotlib.pyplot as plt
plt.imshow(im)
# plt.savefig('./img5-1.png') # 保存要显示的图片
plt.show()

上面的程序将生成以下输出。

图像看起来像一个正方形的色块,我们将检测这些彩色块的边缘。这里使用ndimage的Sobel函数来检测图像边缘,该函数会对图像数组的每个轴分开操作,产生两个矩阵,然后我们使用NumPy中的Hypot函数将这两个矩阵合并为一个矩阵,得到最后结果。

示例

import scipy.ndimage as nd
import numpy as np
import matplotlib.pyplot as plt im = np.zeros((256, 256))
im[64:-64, 64:-64] = 1
im[90:-90,90:-90] = 2
im = nd.gaussian_filter(im, 8) sx = nd.sobel(im, axis = 0, mode = 'constant')
sy = nd.sobel(im, axis = 1, mode = 'constant')
sob = np.hypot(sx, sy) plt.imshow(sob)
# plt.savefig('./img6-1.png') # 保存要显示的图片
plt.show()

上面的程序将生成以下输出。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-qc6G227y-1571731533323)(https://www.qikegu.com/wp-content/uploads/2019/06/img6-1.png)]

SciPy 图像处理的更多相关文章

  1. scipy 图像处理-深度学习

    scipy 图像处理(scipy.misc.scipy.ndimage).matplotlib 图像处理 from scipy.misc import imread / imsave / imshow ...

  2. scipy 图像处理(scipy.misc、scipy.ndimage)、matplotlib 图像处理

    from scipy.misc import imread / imsave / imshow imresize / imrotate / imfilter 1. scipy.misc 下的图像处理 ...

  3. SciPy 信号处理

    章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...

  4. SciPy 统计

    章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...

  5. SciPy 线性代数

    章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...

  6. SciPy 优化

    章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...

  7. SciPy 积分

    章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...

  8. SciPy 插值

    章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...

  9. SciPy 输入输出

    章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...

随机推荐

  1. Linux下如何查看tomcat是否启动、查看tomcat启动日志(转)

    在Linux系统下,重启Tomcat使用命令的操作! 1.首先,进入Tomcat下的bin目录 cd /usr/local/tomcat/bin 使用Tomcat关闭命令 ./shutdown.sh ...

  2. 【JavaWeb】导入Excel并进行校验

    一.需要实现的目标 1.界面编写 2.导入表读取表名,进行校验,后台匹配(判断此表的名称是否能够模糊匹配上) 3.确定表存在,读取其中的数据,暂存 4.正则表达式数据校验(判断是否已存在,数据是否符合 ...

  3. maven设置镜像地址

    方法一:在maven文件夹下的settings.xml中添加(对所有的项目都有效) <mirror> <id>alimaven</id> <name>a ...

  4. Django 学习之Rest Framework 视图相关

    drf除了在数据序列化部分简写代码以外,还在视图中提供了简写操作.所以在django原有的django.views.View类基础上,drf封装了多个子类出来提供给我们使用. Django REST ...

  5. unity优化-GPU(网上整理)

    优化-GPUGPU与CPU不同,所以侧重点自然也不一样.GPU的瓶颈主要存在在如下的方面: 填充率,可以简单的理解为图形处理单元每秒渲染的像素数量.像素的复杂度,比如动态阴影,光照,复杂的shader ...

  6. javaweb使用button的onclick属性访问servlet

    1.定义一个servlet: 如我定义了一个名称为Choose_class.java的servlet 2.定义一个button <input type="button"  v ...

  7. SOAP1.1 VS SOAP1.2

    SOAP提升: 目前WebService的协议主要有SOAP1.1和1.2.两者的命名空间不同. 见下页对比 SOAP1.1版本与SOAP1.2版本在头信息上存在差异.SOAP1.1存在SOAPAct ...

  8. 吴裕雄--天生自然ORACLE数据库学习笔记:PL/SQL编程

    set serveroutput on declare a ; b ; c number; begin c:=(a+b)/(a-b); dbms_output.put_line(c); excepti ...

  9. Python环境搭建-5 代码编辑器

    代码编辑器 Python解释器.pip工具箱和virtuanlenv虚拟环境都安装好了后,基本的Python环境就搭建好了,可以开始我们的"搬砖"之旅了.但是现在还缺一个好用的编辑 ...

  10. DuiLib中FlashDemo的例子经验杂粹1

    转载:https://www.jianshu.com/p/3e958ae9e5ab 最近用duilib做个东西,经常卡壳 ,而且以前学的现在又忘.现在觉得应该好好做笔记,以前老是觉得博客是很郑重的东西 ...