前言

保存 模型有2种方法。

方法

1.使用TensorFlow模型保存函数

   save = tf.train.Saver()
......
saver.save(sess,"checkpoint/model.ckpt",global_step=step)*

得到3个结果

model.ckpt-129220.data-00000-of-00001#保存了模型的所有变量的值。
model.ckpt-129220.index
model.ckpt-129220.meta # 保存了graph结构,包括GraphDef, SaverDef等。存在时,可以不在文件中定义模型,也可以运行

再将这3个文件保存为.pd文件


import tensorflow as tf
import deeplab_model def export_graph(model, checkpoint_dir, model_name):
...
model: the defined model
checkpoint_dir: the dir of three files
model_name: the name of .pb
...
graph = tf.Graph()
with graph.as_default():
### 输入占位符
input_img = tf.placeholder(tf.float32, shape=[None, None, None, 3], name='input_image')
labels = tf.zeros([1, 512, 512,1])
labels = tf.to_int32(tf.image.convert_image_dtype(labels, dtype=tf.uint8))
### 需要输出的Tensor
output = model.deeplabv3_plus_model_fn(
input_img,
labels,
tf.estimator.ModeKeys.EVAL,
params={
'output_stride': 16,
'batch_size': 1, # Batch size must be 1 because the images' size may differ
'base_architecture': 'resnet_v2_50',
'pre_trained_model': None,
'batch_norm_decay': None,
'num_classes': 2,
'freeze_batch_norm': True
}).predictions['classes']
### 给输出的tensor命名
output = tf.identity(output, name='output_label')
restore_saver = tf.train.Saver() with tf.Session(graph=graph) as sess:
### 初始化变量
sess.run(tf.global_variables_initializer())
### load the model
restore_saver.restore(sess, checkpoint_dir) output_graph_def = tf.graph_util.convert_variables_to_constants(
sess, graph.as_graph_def(), [output.op.name])
### 将图写成.pb文件
tf.train.write_graph(output_graph_def, 'pretrained', model_name, as_text=False) ### 调用函数,生成.pd文件
export_graph(deeplab_model, 'model/model.ckpt-133958', 'model.pd') ### 读取 import tensorflow as tf
import os def inference():
with tf.gfile.FastGFile('pretrained/model.pd', 'rb') as model_file:
graph = tf.Graph()
graph_def = tf.GraphDef()
graph_def.ParseFromString(model_file.read())
[output_image] = tf.import_graph_def(graph_def,
input_map={'input_image': images},
return_elements=['output_label:0'],
name='output')
sess = tf.Session()
label = sess.run(output_image)
return label
labels = inference()

2.直接保存

import tensorflow as tf
from tensorflow.python.framework import graph_util
var1 = tf.Variable(1.0, dtype=tf.float32, name='v1')
var2 = tf.Variable(2.0, dtype=tf.float32, name='v2')
var3 = tf.Variable(2.0, dtype=tf.float32, name='v3')
x = tf.placeholder(dtype=tf.float32, shape=None, name='x')
x2 = tf.placeholder(dtype=tf.float32, shape=None, name='x2')
addop = tf.add(x, x2, name='add')
addop2 = tf.add(var1, var2, name='add2')
addop3 = tf.add(var3, var2, name='add3')
initop = tf.global_variables_initializer()
model_path = './Test/model.pb'
with tf.Session() as sess:
sess.run(initop)
print(sess.run(addop, feed_dict={x: 12, x2: 23}))
output_graph_def = graph_util.convert_variables_to_constants(sess, sess.graph_def, ['add', 'add2', 'add3'])
# 将计算图写入到模型文件中
model_f = tf.gfile.FastGFile(model_path, mode="wb")
model_f.write(output_graph_def.SerializeToString()) ####读取代码:
import tensorflow as tf
with tf.Session() as sess:
model_f = tf.gfile.FastGFile("./Test/model.pb", mode='rb')
graph_def = tf.GraphDef()
graph_def.ParseFromString(model_f.read())
c = tf.import_graph_def(graph_def, return_elements=["add2:0"])
c2 = tf.import_graph_def(graph_def, return_elements=["add3:0"])
x, x2, c3 = tf.import_graph_def(graph_def, return_elements=["x:0", "x2:0", "add:0"]) print(sess.run(c))
print(sess.run(c2))
print(sess.run(c3, feed_dict={x: 23, x2: 2}))

Tensorflow 将训练模型保存为pd文件的更多相关文章

  1. tensorflow 保存训练模型ckpt 查看ckpt文件中的变量名和对应值

    TensorFlow 模型保存与恢复 一个快速完整的教程,以保存和恢复Tensorflow模型. 在本教程中,我将会解释: TensorFlow模型是什么样的? 如何保存TensorFlow模型? 如 ...

  2. [翻译] Tensorflow模型的保存与恢复

    翻译自:http://cv-tricks.com/tensorflow-tutorial/save-restore-tensorflow-models-quick-complete-tutorial/ ...

  3. 超详细的Tensorflow模型的保存和加载(理论与实战详解)

    1.Tensorflow的模型到底是什么样的? Tensorflow模型主要包含网络的设计(图)和训练好的各参数的值等.所以,Tensorflow模型有两个主要的文件: a) Meta graph: ...

  4. tensorflow模型的保存与恢复,以及ckpt到pb的转化

    转自 https://www.cnblogs.com/zerotoinfinity/p/10242849.html 一.模型的保存 使用tensorflow训练模型的过程中,需要适时对模型进行保存,以 ...

  5. 『TensorFlow』模型保存和载入方法汇总

    『TensorFlow』第七弹_保存&载入会话_霸王回马 一.TensorFlow常规模型加载方法 保存模型 tf.train.Saver()类,.save(sess, ckpt文件目录)方法 ...

  6. tensorflow模型持久化保存和加载

    模型文件的保存 tensorflow将模型保持到本地会生成4个文件: meta文件:保存了网络的图结构,包含变量.op.集合等信息 ckpt文件: 二进制文件,保存了网络中所有权重.偏置等变量数值,分 ...

  7. 2018百度之星开发者大赛-paddlepaddle学习(二)将数据保存为recordio文件并读取

    paddlepaddle将数据保存为recordio文件并读取 因为有时候一次性将数据加载到内存中有可能太大,所以我们可以选择将数据转换成标准格式recordio文件并读取供我们的网络利用,接下来记录 ...

  8. Tensorflow模型变量保存

    Tensorflow:模型变量保存 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考文献Tensorflow实战Google深度学习框架 实验平台: Tensorflow1.4.0 pyt ...

  9. tensorflow模型持久化保存和加载--深度学习-神经网络

    模型文件的保存 tensorflow将模型保持到本地会生成4个文件: meta文件:保存了网络的图结构,包含变量.op.集合等信息 ckpt文件: 二进制文件,保存了网络中所有权重.偏置等变量数值,分 ...

随机推荐

  1. 【PAT甲级】1064 Complete Binary Search Tree (30 分)

    题意:输入一个正整数N(<=1000),接着输入N个非负整数(<=2000),输出完全二叉树的层次遍历. AAAAAccepted code: #define HAVE_STRUCT_TI ...

  2. linux kali 的ifconfig命令

    ifconfig命令 1.ifconfig执行页面 root@localhost:/home/zys# ifconfig lo: flags=73<UP,LOOPBACK,RUNNING> ...

  3. leetCode练题——9. Palindrome Number

    1.题目 9. Palindrome Number   Determine whether an integer is a palindrome. An integer is a palindrome ...

  4. Linux中常用命令的使用(一)

    这次只讲常用命令 先说命令的组成:命令一般由 (选项.命令.参数) 组成 下面就从开启一个Ubuntu开始说起 1.用户登录:在putty环境下,输完用户名在输入密码 别人想知道你用的linux系统 ...

  5. Python中神秘的-5到256

    注:本文不区分作为编程语言的Python和作为语言实现的Python.后者均默认为CPython. 了解他人对Python源代码的掌握情况,我喜欢问这样一个问题 请问,在Python中,256和257 ...

  6. Flex 学习笔记

    Flex布局是什么 Flex 是 Flexible Box 的缩写,意为"弹性布局",用来为盒状模型提供最大的灵活性. 任何一个容器都可以指定为Flex布局 .box{ displ ...

  7. 第4节 Scala中的actor介绍:1、actor概念介绍;2、actor执行顺序和发送消息的方式

    10.    Scala Actor并发编程 10.1.   课程目标 10.1.1.    目标一:熟悉Scala Actor并发编程 10.1.2.    目标二:为学习Akka做准备 注:Sca ...

  8. Linux命令:grep命令 | egrep命令

    grep:文本搜素工具,根据用户指定的文本模式对目标文件进行逐行搜索,显示能被模式所匹配到的行 包含三个命令:grep.egrep(相当于grep -E 扩展的正则表达式)和fgrep(相当于grep ...

  9. 苹果系统 MacOS 安装根证书

    12306 网上购票以及一些其他内部使用的系统,需要安装.cer扩展名的根证书的情况,windows安装较为简单大家也比较熟悉,使用mac安装根证书在此做下详细介绍. 当前以10.13.5版本为例,其 ...

  10. LPS(最长回文子序列)

    (注意:我发现最长回文子序列(Longest Palindromic Subsequence)问题与最长回文子串(Longest Palindromic Substring)不一样,子序列不要求下标一 ...