在快速开始中,我们演示了接入本地示例数据方式,但Druid其实支持非常丰富的数据接入方式。比如批处理数据的接入和实时流数据的接入。本文我们将介绍这几种数据接入方式。

  • 文件数据接入:从文件中加载批处理数据
  • 从Kafka中接入流数据:从Kafka中加载流数据
  • Hadoop数据接入:从Hadoop中加载批处理数据
  • 编写自己的数据接入规范:自定义新的接入规范

本文主要介绍前两种最常用的数据接入方式。

1、Loading a file——加载文件

Druid提供以下几种方式加载数据:

  • 通过页面数据加载器

  • 通过控制台

  • 通过命令行

  • 通过Curl命令调用

1.1、数据加载器

Druid提供了一个示例数据文件,其中包含2015年9月12日发生的Wiki的示例数据。

此样本数据位于quickstart/tutorial/wikiticker-2015-09-12-sampled.json.gz

示例数据大概是这样:

{
"timestamp":"2015-09-12T20:03:45.018Z",
"channel":"#en.wikipedia",
"namespace":"Main",
"page":"Spider-Man's powers and equipment",
"user":"foobar",
"comment":"/* Artificial web-shooters */",
"cityName":"New York",
"regionName":"New York",
"regionIsoCode":"NY",
"countryName":"United States",
"countryIsoCode":"US",
"isAnonymous":false,
"isNew":false,
"isMinor":false,
"isRobot":false,
"isUnpatrolled":false,
"added":99,
"delta":99,
"deleted":0,
}

Druid加载数据分为以下几种:

  • 加载文件
  • 从kafka中加载数据
  • 从hadoop中加载数据
  • 自定义加载方式

我们这样演示一下加载示例文件数据

1.1.1、进入localhost:8888 点击load data

1.1.2、选择local disk

1.1.3、选择Connect data

1.1.4、预览数据

Base directory输入quickstart/tutorial/

File filter输入 wikiticker-2015-09-12-sampled.json.gz

然后点击apply预览 就可以看见数据了 点击Next:parse data解析数据

1.1.5、解析数据

可以看到json数据已经被解析了 继续解析时间

1.1.6、解析时间

解析时间成功 之后两步是transform和filter 这里不做演示了 直接next

1.1.7、确认Schema

这一步会让我们确认Schema 可以做一些修改

由于数据量较小 我们直接关掉Rollup 直接下一步

1.1.8、设置分段

这里可以设置数据分段 我们选择hour next

1.1.9、确认发布

1.1.10、发布成功 开始解析数据

等待任务成功

1.1.11、查看数据

选择datasources 可以看到我们加载的数据

可以看到数据源名称 Fully是完全可用 还有大小等各种信息

1.1.12、查询数据

点击query按钮

我们可以写sql查询数据了 还可以将数据下载

1.2 控制台

在任务视图中,单击Submit JSON task

这将打开规格提交对话框,粘贴规范

{
"type" : "index_parallel",
"spec" : {
"dataSchema" : {
"dataSource" : "wikipedia",
"dimensionsSpec" : {
"dimensions" : [
"channel",
"cityName",
"comment",
"countryIsoCode",
"countryName",
"isAnonymous",
"isMinor",
"isNew",
"isRobot",
"isUnpatrolled",
"metroCode",
"namespace",
"page",
"regionIsoCode",
"regionName",
"user",
{ "name": "added", "type": "long" },
{ "name": "deleted", "type": "long" },
{ "name": "delta", "type": "long" }
]
},
"timestampSpec": {
"column": "time",
"format": "iso"
},
"metricsSpec" : [],
"granularitySpec" : {
"type" : "uniform",
"segmentGranularity" : "day",
"queryGranularity" : "none",
"intervals" : ["2015-09-12/2015-09-13"],
"rollup" : false
}
},
"ioConfig" : {
"type" : "index_parallel",
"inputSource" : {
"type" : "local",
"baseDir" : "quickstart/tutorial/",
"filter" : "wikiticker-2015-09-12-sampled.json.gz"
},
"inputFormat" : {
"type": "json"
},
"appendToExisting" : false
},
"tuningConfig" : {
"type" : "index_parallel",
"maxRowsPerSegment" : 5000000,
"maxRowsInMemory" : 25000
}
}
}

查看加载任务即可。

1.3 命令行

为了方便起见,Druid提供了一个加载数据的脚本

bin/post-index-task

我们可以运行命令

bin/post-index-task --file quickstart/tutorial/wikipedia-index.json --url http://localhost:8081

看到如下输出:

Beginning indexing data for wikipedia
Task started: index_wikipedia_2018-07-27T06:37:44.323Z
Task log: http://localhost:8081/druid/indexer/v1/task/index_wikipedia_2018-07-27T06:37:44.323Z/log
Task status: http://localhost:8081/druid/indexer/v1/task/index_wikipedia_2018-07-27T06:37:44.323Z/status
Task index_wikipedia_2018-07-27T06:37:44.323Z still running...
Task index_wikipedia_2018-07-27T06:37:44.323Z still running...
Task finished with status: SUCCESS
Completed indexing data for wikipedia. Now loading indexed data onto the cluster...
wikipedia loading complete! You may now query your data

查看加载任务即可。

1.4 CURL

我们可以通过直接调用CURL来加载数据

curl -X 'POST' -H 'Content-Type:application/json' -d @quickstart/tutorial/wikipedia-index.json http://localhost:8081/druid/indexer/v1/task

提交成功

{"task":"index_wikipedia_2018-06-09T21:30:32.802Z"}

2、Load from Apache Kafka——从Apache Kafka加载流数据

Apache Kafka是一个高性能的消息系统,由Scala 写成。是由Apache 软件基金会开发的一个开源消息系统项目。

Kafka 最初是由LinkedIn 开发,并于2011 年初开源。2012 年10 月从Apache Incubator 毕业。该项目的目标是为处理实时数据提供一个统一、高通量、低等待(低延时)的平台。

更多kafka相关请查看Kafka入门宝典(详细截图版)

2.1 安装kafka

我们安装一个最新的kafka

curl -O https://archive.apache.org/dist/kafka/2.1.0/kafka_2.12-2.1.0.tgz
tar -xzf kafka_2.12-2.1.0.tgz
cd kafka_2.12-2.1.0

启动kafka

./bin/kafka-server-start.sh config/server.properties

创建一个topic

./bin/kafka-topics.sh --create --zookeeper localhost:2181 --replication-factor 1 --partitions 1 --topic wikipedia

2.2 将数据写入Kafka

向kafka的topic为wikipedia写入数据

cd quickstart/tutorial
gunzip -c wikiticker-2015-09-12-sampled.json.gz > wikiticker-2015-09-12-sampled.json

在kafka目录中运行命令 {PATH_TO_DRUID}替换为druid目录

export KAFKA_OPTS="-Dfile.encoding=UTF-8"
./bin/kafka-console-producer.sh --broker-list localhost:9092 --topic wikipedia < {PATH_TO_DRUID}/quickstart/tutorial/wikiticker-2015-09-12-sampled.json

2.3 加载kafka数据到Druid

druid加载kafka的数据也有多种方式

  • 数据加载器
  • 控制台
  • CURL

2.3.1 数据加载器

2.3.1.1 进入localhost:8888 点击load data

选择Apache Kafka并单击Connect data

2.3.1.2 输入kafka服务器localhost:9092
输入topic wikipedia 可以预览数据 然后下一步

2.3.1.3 解析数据

2.3.1.4 解析时间戳 设置转换 设置过滤





2.3.1.4 这步比较重要 确定统计的范围

2.3.1.5 发布

2.3.1.6 等待任务完成



2.3.1.7 去查询页面查看

2.3.2 控制台

在任务视图中,单击Submit JSON supervisor以打开对话框。

粘贴进去如下指令

{
"type": "kafka",
"spec" : {
"dataSchema": {
"dataSource": "wikipedia",
"timestampSpec": {
"column": "time",
"format": "auto"
},
"dimensionsSpec": {
"dimensions": [
"channel",
"cityName",
"comment",
"countryIsoCode",
"countryName",
"isAnonymous",
"isMinor",
"isNew",
"isRobot",
"isUnpatrolled",
"metroCode",
"namespace",
"page",
"regionIsoCode",
"regionName",
"user",
{ "name": "added", "type": "long" },
{ "name": "deleted", "type": "long" },
{ "name": "delta", "type": "long" }
]
},
"metricsSpec" : [],
"granularitySpec": {
"type": "uniform",
"segmentGranularity": "DAY",
"queryGranularity": "NONE",
"rollup": false
}
},
"tuningConfig": {
"type": "kafka",
"reportParseExceptions": false
},
"ioConfig": {
"topic": "wikipedia",
"inputFormat": {
"type": "json"
},
"replicas": 2,
"taskDuration": "PT10M",
"completionTimeout": "PT20M",
"consumerProperties": {
"bootstrap.servers": "localhost:9092"
}
}
}
}

2.3.3 CURL

我们也可以通过直接调用CURL来加载kafka数据

curl -XPOST -H'Content-Type: application/json' -d @quickstart/tutorial/wikipedia-kafka-supervisor.json http://localhost:8081/druid/indexer/v1/supervisor

静下心来,努力的提升自己,永远都没有错。更多实时计算相关博文,欢迎关注实时流式计算

Druid 0.17 入门(3)—— 数据接入指南的更多相关文章

  1. Druid 0.17 入门(2)—— 安装与部署

    在Druid快速入门其实已经简单的介绍过最简化配置的单节点部署,本文我们将详细描述Druid的多种部署方式,对于测试开发环境可以选用轻量的单机部署方式,而生产环境我们最好选用集群部署的方式,确保系统的 ...

  2. Druid 0.17入门(4)—— 数据查询方式大全

    本文介绍Druid查询数据的方式,首先我们保证数据已经成功载入. Druid查询基于HTTP,Druid提供了查询视图,并对结果进行了格式化. Druid提供了三种查询方式,SQL,原生JSON,CU ...

  3. TensorFlow 2.0 快速入门指南 | iBooker·ApacheCN

    原文:TensorFlow 2.0 Quick Start Guide 协议:CC BY-NC-SA 4.0 自豪地采用谷歌翻译 不要担心自己的形象,只关心如何实现目标.--<原则>,生活 ...

  4. DWR3.0框架入门(2) —— DWR的服务器推送

    DWR3.0框架入门(2) —— DWR的服务器推送 DWR 在开始本节内容之前,先来了解一下什么是服务器推送技术和DWR的推送方式.   1.服务器推送技术和DWR的推送方式   传统模式的 Web ...

  5. Druid:一个用于大数据实时处理的开源分布式系统

    Druid是一个用于大数据实时查询和分析的高容错.高性能开源分布式系统,旨在快速处理大规模的数据,并能够实现快速查询和分析.尤其是当发生代码部署.机器故障以及其他产品系统遇到宕机等情况时,Druid仍 ...

  6. atitit.恒朋无纸化彩票系统数据接入通信协议

    atitit.恒朋无纸化彩票系统数据接入通信协议 深圳市恒朋科技开发有限公司 Shenzhen Helper Science & Technology Co., Ltd. 恒朋无纸化彩票系统数 ...

  7. Druid:一个用于大数据实时处理的开源分布式系统——大数据实时查询和分析的高容错、高性能开源分布式系统

    转自:http://www.36dsj.com/archives/28590 Druid 是一个用于大数据实时查询和分析的高容错.高性能开源分布式系统,旨在快速处理大规模的数据,并能够实现快速查询和分 ...

  8. [转帖]Druid介绍及入门

    Druid介绍及入门 2018-09-19 19:38:36 拿着核武器的程序员 阅读数 22552更多 分类专栏: Druid   版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议 ...

  9. 重大更新!Druid 0.18.0 发布—Join登场,支持Java11

    Apache Druid本质就是一个分布式支持实时数据分析的数据存储系统. 能够快速的实现查询与数据分析,高可用,高扩展能力. 距离上一次更新刚过了二十多天,距离0.17版本刚过了三个多月,Druid ...

随机推荐

  1. 阿里云系统安装部署Freeswitch

    1.安装vim apt-get install vim 2.修改镜像源 将/etc/apt/source.list的原有源注释掉,添加下面的源: deb http://mirrors.163.com/ ...

  2. Filter 中注入失败问题

    参考: https://www.cnblogs.com/digdeep/p/4770004.html?tvd https://www.cnblogs.com/EasonJim/p/7666009.ht ...

  3. 发现个很有意思的angularjs +grunt 复习项目

    最近作运维工作 docker 接触到一个开源webui dockerui 原项目地址 https://github.com/crosbymichael/dockerui 用angular框架实现,项目 ...

  4. Android开发之《安全防护》

    逆向 java混淆 so加固 网络传输安全

  5. sql执行过程

    作为一个程序员,几乎所有人都使用过 SQL 语言,无论是在命令行执行.程序调用,还是在 SQL 工具里,你都做过这样的事:写一个规范的 SQL 语句,然后等待数据库返回的结果,然后再基于结果做各种逻辑 ...

  6. supervised learning|unsupervised learning

    监督学习即是supervised learning,原始数据中有每个数据有自己的数据结构同时有标签,用于classify,机器learn的是判定规则,通过已成熟的数据training model达到判 ...

  7. if分支判断

    # 控制语句 分支 循环语句 # 判断语句 if ..elif..else # if 条件语句(比较 逻辑 成员运算) # 空数据 == False # 非空数据 == True age = 20 i ...

  8. vue基础指令了解补充及组件介绍

    v-once指令 """ v-once:单独使用,限制的标签内容一旦赋值,便不可被动更改(如果是输入框,可以主动修改) """ <di ...

  9. scatter散点图

    import matplotlib.pyplot as plt import numpy as np n = 1024 X = np.random.normal(0,1,n) Y = np.rando ...

  10. 【转】PHP中被忽略的性能优化利器:生成器.md

      PHP  如果是做Python或者其他语言的小伙伴,对于生成器应该不陌生.但很多PHP开发者或许都不知道生成器这个功能,可能是因为生成器是PHP 5.5.0才引入的功能,也可以是生成器作用不是很明 ...