Given a connected undirected graph, tell if its minimum spanning tree is unique.

Definition 1 (Spanning Tree): Consider a connected, undirected graph G = (V, E). A spanning tree of G is a subgraph of G, say T = (V', E'), with the following properties:
1. V' = V.
2. T is connected and acyclic.

Definition 2 (Minimum Spanning Tree): Consider an edge-weighted, connected, undirected graph G = (V, E). The minimum spanning tree T = (V, E') of G is the spanning tree that has the smallest total cost. The total cost of T means the sum of the weights on all the edges in E'.

Input

The first line contains a single integer t (1 <= t <= 20), the number of test cases. Each case represents a graph. It begins with a line containing two integers n and m (1 <= n <= 100), the number of nodes and edges. Each of the following m lines contains a triple (xi, yi, wi), indicating that xi and yi are connected by an edge with weight = wi. For any two nodes, there is at most one edge connecting them.

Output

For each input, if the MST is unique, print the total cost of it, or otherwise print the string 'Not Unique!'.

Sample Input

2
3 3
1 2 1
2 3 2
3 1 3
4 4
1 2 2
2 3 2
3 4 2
4 1 2

Sample Output

3
Not Unique! 思路:找次小生成树,如果权值相等则不唯一,用kruskal实现次小生成树
const int maxm = ;
const int maxn = ; struct edge {
int u, v, w;
edge(int _u=-, int _v=-, int _w=):u(_u), v(_v), w(_w){}
bool operator<(const edge &a) const {
return w < a.w;
}
};
vector<edge> Edge; int fa[maxm], T, N, M, tree[maxn], k; void init() {
Edge.clear();
for(int i = ; i <= N; ++i)
fa[i] = i;
k = ;
} int Find(int x) {
if(fa[x] == x)
return x;
return fa[x] = Find(fa[x]);
} void Union(int x, int y) {
x = Find(x), y = Find(y);
if(x != y) fa[x] = y;
} int main() {
scanf("%d", &T);
while(T--) {
int t1, t2, t3, u, v;
scanf("%d%d", &N, &M);
init();
int sum = ;
for(int i = ; i < M; ++i) {
scanf("%d%d%d", &t1, &t2, &t3);
Edge.push_back(edge(t1, t2, t3));
}
sort(Edge.begin(), Edge.end());
bool flag = true;
for(int i = ; i < M; ++i) {
u = Edge[i].u, v = Edge[i].v;
u = Find(u), v = Find(v);
if(u != v) {
sum += Edge[i].w;
Union(u,v);
tree[k++] = i;
}
}
for(int i = ; i < k; ++i) {
int cnt = , edgenum = ;
for(int t = ; t <= N; ++t)
fa[t] = t;
for(int j = ; j < M; ++j) {
if(j == tree[i]) continue;
u = Edge[j].u, v = Edge[j].v;
u = Find(u), v = Find(v);
if(u != v) {
cnt += Edge[j].w;
edgenum++;
Union(u,v);
}
}
if(cnt == sum && edgenum == N - ) {
flag = false;
break;
}
}
if(flag)
printf("%d\n", sum);
else printf("Not Unique!\n");
}
return ;
}

次小生成树博客:https://www.cnblogs.com/bianjunting/p/10829212.html

https://blog.csdn.net/niushuai666/article/details/6925258

注:这里的Max数组是记录从i到j节点中边权最大值(不是和),从其父节点与新连接的边中比较

												

Day5 - G - The Unique MST POJ - 1679的更多相关文章

  1. (最小生成树 次小生成树)The Unique MST -- POJ -- 1679

    链接: http://poj.org/problem?id=1679 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=82831#probl ...

  2. The Unique MST POJ - 1679 (次小生成树)

    Given a connected undirected graph, tell if its minimum spanning tree is unique. Definition 1 (Spann ...

  3. K - The Unique MST - poj 1679

    题目的意思已经说明了一切,次小生成树... ****************************************************************************** ...

  4. The Unique MST POJ - 1679 次小生成树prim

    求次小生成树思路: 先把最小生成树求出来  用一个Max[i][j] 数组把  i点到j 点的道路中 权值最大的那个记录下来 used数组记录该条边有没有被最小生成树使用过   把没有使用过的一条边加 ...

  5. The Unique MST POJ - 1679 最小生成树判重

    题意:求一个无向图的最小生成树,如果有多个最优解,输出"Not Unique!" 题解: 考虑kruskal碰到权值相同的边: 假设点3通过边(1,3)连入当前所维护的并查集s. ...

  6. poj 1679 The Unique MST

    题目连接 http://poj.org/problem?id=1679 The Unique MST Description Given a connected undirected graph, t ...

  7. poj 1679 The Unique MST(唯一的最小生成树)

    http://poj.org/problem?id=1679 The Unique MST Time Limit: 1000MS   Memory Limit: 10000K Total Submis ...

  8. POJ 1679 The Unique MST(判断最小生成树是否唯一)

    题目链接: http://poj.org/problem?id=1679 Description Given a connected undirected graph, tell if its min ...

  9. poj 1679 The Unique MST (判定最小生成树是否唯一)

    题目链接:http://poj.org/problem?id=1679 The Unique MST Time Limit: 1000MS   Memory Limit: 10000K Total S ...

随机推荐

  1. pandas 存储文件到MySQL 以及读取

    pandas导入数据到MySQL 1.导入必要的库 2.创建链接 3.导入数据 import pandas as pd from sqlalchemy import create_engine con ...

  2. Java基础知识笔记第八章:常用的实体类

    String类 String类位于lang包下 java会默认导入lang包下的类,所以可以直接使用,注意String是final类所以不能有子类 构造String对象: 常量对象:String常量也 ...

  3. Java基础 -1.4

    标识符与关键字 对于标识符的组成在Java之中的定义如下:由字母.数字._.$ 组成 其中不能使用Java的保留字(关键字) 其中 $ 一般都有特殊的含义 不建议出现在自己所编写的代码上 关键字 是系 ...

  4. java记录3--异常

    异常的分类 1.Error 由java虚拟机生成并抛出,包括动态链接失败,虚拟机错误等等,JAVA程序无法对此错误 try { //可能出现异常的代码块 } catch(exception1 ) { ...

  5. KEIL的一些函数

    一 Predefined Functions:http://www.keil.com/support/man/docs/uv4cl/uv4cl_df_predeffunct.htm 主要有三角/反三角 ...

  6. Django问题 Did you rename .....a ForeignKey

    给新加入的字段添加一个default默认值即可,让字段非空.然后在进行makemigrations,完成操作后删除相关默认值即可.

  7. TortoiseGit+msysgit保存用户名和密码

    本文以windows系统为例 保存用户名和密码 在C盘的c:\Users**qing** (或可能是C:\Users\Administrator) (替换自己的用户名)找到.gitconfig, 如果 ...

  8. 笔记||Python3进阶之调用外部程序

    像wget可以下载文件 ffmpeg可以切割.合并.转换.录制视频 free命令可以查看linux内存使用信息 python提供了库来调用外部程序.命令?> 最常见的两种方法:       ①o ...

  9. redis之Hash类型常用方法总结

    redis之Hash类型常用方法总结 格式: 存--HMGET key field [field ...] 取--HMGET key field [field ...] M:表示能取多个值,many ...

  10. CF1209C Paint the Digits

    CF1209C Paint the Digits 题意:给定T组数据,每组数据第一行输入数字串长度,第二行输入数字串,用数字1和2对数字串进行涂色,被1涂色的数字子串和被2涂色的数字子串拼接成新的数字 ...