Given a connected undirected graph, tell if its minimum spanning tree is unique.

Definition 1 (Spanning Tree): Consider a connected, undirected graph G = (V, E). A spanning tree of G is a subgraph of G, say T = (V', E'), with the following properties:
1. V' = V.
2. T is connected and acyclic.

Definition 2 (Minimum Spanning Tree): Consider an edge-weighted, connected, undirected graph G = (V, E). The minimum spanning tree T = (V, E') of G is the spanning tree that has the smallest total cost. The total cost of T means the sum of the weights on all the edges in E'.

Input

The first line contains a single integer t (1 <= t <= 20), the number of test cases. Each case represents a graph. It begins with a line containing two integers n and m (1 <= n <= 100), the number of nodes and edges. Each of the following m lines contains a triple (xi, yi, wi), indicating that xi and yi are connected by an edge with weight = wi. For any two nodes, there is at most one edge connecting them.

Output

For each input, if the MST is unique, print the total cost of it, or otherwise print the string 'Not Unique!'.

Sample Input

2
3 3
1 2 1
2 3 2
3 1 3
4 4
1 2 2
2 3 2
3 4 2
4 1 2

Sample Output

3
Not Unique! 思路:找次小生成树,如果权值相等则不唯一,用kruskal实现次小生成树
const int maxm = ;
const int maxn = ; struct edge {
int u, v, w;
edge(int _u=-, int _v=-, int _w=):u(_u), v(_v), w(_w){}
bool operator<(const edge &a) const {
return w < a.w;
}
};
vector<edge> Edge; int fa[maxm], T, N, M, tree[maxn], k; void init() {
Edge.clear();
for(int i = ; i <= N; ++i)
fa[i] = i;
k = ;
} int Find(int x) {
if(fa[x] == x)
return x;
return fa[x] = Find(fa[x]);
} void Union(int x, int y) {
x = Find(x), y = Find(y);
if(x != y) fa[x] = y;
} int main() {
scanf("%d", &T);
while(T--) {
int t1, t2, t3, u, v;
scanf("%d%d", &N, &M);
init();
int sum = ;
for(int i = ; i < M; ++i) {
scanf("%d%d%d", &t1, &t2, &t3);
Edge.push_back(edge(t1, t2, t3));
}
sort(Edge.begin(), Edge.end());
bool flag = true;
for(int i = ; i < M; ++i) {
u = Edge[i].u, v = Edge[i].v;
u = Find(u), v = Find(v);
if(u != v) {
sum += Edge[i].w;
Union(u,v);
tree[k++] = i;
}
}
for(int i = ; i < k; ++i) {
int cnt = , edgenum = ;
for(int t = ; t <= N; ++t)
fa[t] = t;
for(int j = ; j < M; ++j) {
if(j == tree[i]) continue;
u = Edge[j].u, v = Edge[j].v;
u = Find(u), v = Find(v);
if(u != v) {
cnt += Edge[j].w;
edgenum++;
Union(u,v);
}
}
if(cnt == sum && edgenum == N - ) {
flag = false;
break;
}
}
if(flag)
printf("%d\n", sum);
else printf("Not Unique!\n");
}
return ;
}

次小生成树博客:https://www.cnblogs.com/bianjunting/p/10829212.html

https://blog.csdn.net/niushuai666/article/details/6925258

注:这里的Max数组是记录从i到j节点中边权最大值(不是和),从其父节点与新连接的边中比较

												

Day5 - G - The Unique MST POJ - 1679的更多相关文章

  1. (最小生成树 次小生成树)The Unique MST -- POJ -- 1679

    链接: http://poj.org/problem?id=1679 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=82831#probl ...

  2. The Unique MST POJ - 1679 (次小生成树)

    Given a connected undirected graph, tell if its minimum spanning tree is unique. Definition 1 (Spann ...

  3. K - The Unique MST - poj 1679

    题目的意思已经说明了一切,次小生成树... ****************************************************************************** ...

  4. The Unique MST POJ - 1679 次小生成树prim

    求次小生成树思路: 先把最小生成树求出来  用一个Max[i][j] 数组把  i点到j 点的道路中 权值最大的那个记录下来 used数组记录该条边有没有被最小生成树使用过   把没有使用过的一条边加 ...

  5. The Unique MST POJ - 1679 最小生成树判重

    题意:求一个无向图的最小生成树,如果有多个最优解,输出"Not Unique!" 题解: 考虑kruskal碰到权值相同的边: 假设点3通过边(1,3)连入当前所维护的并查集s. ...

  6. poj 1679 The Unique MST

    题目连接 http://poj.org/problem?id=1679 The Unique MST Description Given a connected undirected graph, t ...

  7. poj 1679 The Unique MST(唯一的最小生成树)

    http://poj.org/problem?id=1679 The Unique MST Time Limit: 1000MS   Memory Limit: 10000K Total Submis ...

  8. POJ 1679 The Unique MST(判断最小生成树是否唯一)

    题目链接: http://poj.org/problem?id=1679 Description Given a connected undirected graph, tell if its min ...

  9. poj 1679 The Unique MST (判定最小生成树是否唯一)

    题目链接:http://poj.org/problem?id=1679 The Unique MST Time Limit: 1000MS   Memory Limit: 10000K Total S ...

随机推荐

  1. ubuntu 18.04 上安装 docker

    命令安装 docker 1.直接从 ubuntu 仓库安装,打开终端,输入: 2.启动 docker 服务  . 设置开机自启动 docker 服务 3.免 sudo 配置:

  2. 文件目录T位

    场景: 共享目录设置T标志 可以看别人的文件,但不可以删除.修改别人的文件 除非是ROOT,目录的拥有者

  3. 七 Struts2访问Servlet的API方式二:原生方式

    Struts2访问Servlet的API方式二:原生方式 和解耦合的方式不同,原生方式既可以拿到域对象,也可以调用域对象中的方法 前端jsp: <%@ page language="j ...

  4. CPD

    CPD,Cost per day的缩写,意思是按天收费,是一种广告合作方式.在实际的广告合作中根据行业不同还包括Cost per Download的缩写含义,意思是依据实际下载量收费.

  5. SpringBoot nohup启动

    #!/bin/sh nohup java -jar /data/wwwroot/xxx.jar > /data/wwwlogs/xxx.log >&

  6. Python作业篇 day03

    ###一.有变量name = 'aleX leNb',完成如下的操作 name = 'aleX leNb' name1 = ' aleX leNb ' #1.移除name1 变量对应的值两边的空格 , ...

  7. 【剑指Offer面试编程题】题目1386:旋转数组的最小数字--九度OJ

    题目描述: 把一个数组最开始的若干个元素搬到数组的末尾,我们称之为数组的旋转.输入一个递增排序的数组的一个旋转,输出旋转数组的最小元素.例如数组{3,4,5,1,2}为{1,2,3,4,5}的一个旋转 ...

  8. JS enter键一键登录

    $("body").keydown(function (event) { ) { //enter键键值为13 $('.finish-btn').click(); // $('.fi ...

  9. Vue - 引入本地图片的两种方式

    第一种,只引入单个图片,这种引入方法在异步中引入则会报错. 比如需要遍历出很多图片展示时 <image :src = require('图片的路径') /> 第二种,可引入多个图片,也可引 ...

  10. 一个前端博主的nginx+php+mysql的环境搭建

    这几天天某的公司给了在下一个需求,让我修改一个后端大佬用PHP写的一个官网,虽然说修改的内容还是很简单,但是毕竟之前还是没接触过PHP,于是开始了漫长的爬坑之旅,话不多说,这次就给大家介绍一下我配置安 ...