写在前面:之前看过一点,然后看不懂,也没用过。

最近正好重构项目看到寻路这块,想起来就去查查资料,总算稍微理解一点了,下面记录一下自己的成果(哈哈哈 :> )

下面分享几篇我觉得挺不错的文章

A*算法

A*寻路算法详细解读

========================================================================================

搜索区域(The Search Area)

我们假设某人要从 A 点移动到 B 点,但是这两点之间被一堵墙隔开。如图 1 ,绿色是 A ,红色是 B ,中间蓝色是墙。

图 1

你应该注意到了,我们把要搜寻的区域划分成了正方形的格子。这是寻路的第一步,简化搜索区域,就像我们这里做的一样。这个特殊的方法把我们的搜索区域简化为了 2 维数组。数组的每一项代表一个格子,它的状态就是可走 (walkalbe) 和不可走 (unwalkable) 。通过计算出从 A 到 B需要走过哪些方格,就找到了路径。一旦路径找到了,人物便从一个方格的中心移动到另一个方格的中心,直至到达目的地。

方格的中心点我们成为“节点 (nodes) ”。如果你读过其他关于 A* 寻路算法的文章,你会发现人们常常都在讨论节点。为什么不直接描述为方格呢?因为我们有可能把搜索区域划为为其他多变形而不是正方形,例如可以是六边形,矩形,甚至可以是任意多变形。而节点可以放在任意多边形里面,可以放在多变形的中心,也可以放在多边形的边上。我们使用这个系统,因为它最简单。

开始搜索(Starting the Search)

一旦我们把搜寻区域简化为一组可以量化的节点后,就像上面做的一样,我们下一步要做的便是查找最短路径。在 A* 中,我们从起点开始,检查其相邻的方格,然后向四周扩展,直至找到目标。

我们这样开始我们的寻路旅途:

1.       从起点 A 开始,并把它就加入到一个由方格组成的 open list( 开放列表 ) 中。这个 open list 有点像是一个购物单。当然现在 open list 里只有一项,它就是起点 A ,后面会慢慢加入更多的项。 Open list 里的格子是路径可能会是沿途经过的,也有可能不经过。基本上 open list 是一个待检查的方格列表。

2.       查看与起点 A 相邻的方格 ( 忽略其中墙壁所占领的方格,河流所占领的方格及其他非法地形占领的方格 ) ,把其中可走的 (walkable) 或可到达的 (reachable) 方格也加入到 open list 中。把起点 A 设置为这些方格的父亲 (parent node 或 parent square) 。当我们在追踪路径时,这些父节点的内容是很重要的。稍后解释。

3.       把 A 从 open list 中移除,加入到 close list( 封闭列表 ) 中, close list 中的每个方格都是现在不需要再关注的。

如下图所示,深绿色的方格为起点,它的外框是亮蓝色,表示该方格被加入到了 close list 。与它相邻的黑色方格是需要被检查的,他们的外框是亮绿色。每个黑方格都有一个灰色的指针指向他们的父节点,这里是起点 A 。

图 2 。

下一步,我们需要从 open list 中选一个与起点 A 相邻的方格,按下面描述的一样或多或少的重复前面的步骤。但是到底选择哪个方格好呢?具有最小 F 值的那个。

路径排序(Path Sorting)

计算出组成路径的方格的关键是下面这个等式:

F = G + H

这里,

G = 从起点 A 移动到指定方格的移动代价,沿着到达该方格而生成的路径。

H = 从指定的方格移动到终点 B 的估算成本。这个通常被称为试探法,有点让人混淆。为什么这么叫呢,因为这是个猜测。直到我们找到了路径我们才会知道真正的距离,因为途中有各种各样的东西 ( 比如墙壁,水等 ) 。本教程将教你一种计算 H 的方法,你也可以在网上找到其他方法。

我们的路径是这么产生的:反复遍历 open list ,选择 F 值最小的方格。这个过程稍后详细描述。我们还是先看看怎么去计算上面的等式。

如上所述, G 是从起点A移动到指定方格的移动代价。在本例中,横向和纵向的移动代价为 10 ,对角线的移动代价为 14 。之所以使用这些数据,是因为实际的对角移动距离是 2 的平方根,或者是近似的 1.414 倍的横向或纵向移动代价。使用 10 和 14 就是为了简单起见。比例是对的,我们避免了开放和小数的计算。这并不是我们没有这个能力或是不喜欢数学。使用这些数字也可以使计算机更快。稍后你便会发现,如果不使用这些技巧,寻路算法将很慢。

既然我们是沿着到达指定方格的路径来计算 G 值,那么计算出该方格的 G 值的方法就是找出其父亲的 G 值,然后按父亲是直线方向还是斜线方向加上 10 或 14 。随着我们离开起点而得到更多的方格,这个方法会变得更加明朗。

有很多方法可以估算 H 值。这里我们使用 Manhattan 方法,计算从当前方格横向或纵向移动到达目标所经过的方格数,忽略对角移动,然后把总数乘以 10 。之所以叫做 Manhattan 方法,是因为这很像统计从一个地点到另一个地点所穿过的街区数,而你不能斜向穿过街区。重要的是,计算 H 是,要忽略路径中的障碍物。这是对剩余距离的估算值,而不是实际值,因此才称为试探法。

把 G 和 H 相加便得到 F 。我们第一步的结果如下图所示。每个方格都标上了 F , G , H 的值,就像起点右边的方格那样,左上角是 F ,左下角是 G ,右下角是 H 。

图 3

好,现在让我们看看其中的一些方格。在标有字母的方格, G = 10 。这是因为水平方向从起点到那里只有一个方格的距离。与起点直接相邻的上方,下方,左方的方格的 G 值都是 10 ,对角线的方格 G 值都是 14 。

H 值通过估算起点于终点 ( 红色方格 ) 的 Manhattan 距离得到,仅作横向和纵向移动,并且忽略沿途的墙壁。使用这种方式,起点右边的方格到终点有 3 个方格的距离,因此 H = 30 。这个方格上方的方格到终点有 4 个方格的距离 ( 注意只计算横向和纵向距离 ) ,因此 H = 40 。对于其他的方格,你可以用同样的方法知道 H 值是如何得来的。

每个方格的 F 值,再说一次,直接把 G 值和 H 值相加就可以了。

继续搜索(Continuing the Search)

为了继续搜索,我们从 open list 中选择 F 值最小的 ( 方格 ) 节点,然后对所选择的方格作如下操作:

4.       把它从 open list 里取出,放到 close list 中。

5.       检查所有与它相邻的方格,忽略其中在 close list 中或是不可走 (unwalkable) 的方格 ( 比如墙,水,或是其他非法地形 ) ,如果方格不在open lsit 中,则把它们加入到 open list 中。

把我们选定的方格设置为这些新加入的方格的父亲。

6.       如果某个相邻的方格已经在 open list 中,则检查这条路径是否更优,也就是说经由当前方格 ( 我们选中的方格 ) 到达那个方格是否具有更小的 G 值。如果没有,不做任何操作。

相反,如果 G 值更小,则把那个方格的父亲设为当前方格 ( 我们选中的方格 ) ,然后重新计算那个方格的 F 值和 G 值。如果你还是很混淆,请参考下图。

图 4

Ok ,让我们看看它是怎么工作的。在我们最初的 9 个方格中,还有 8 个在 open list 中,起点被放入了 close list 中。在这些方格中,起点右边的格子的 F 值 40 最小,因此我们选择这个方格作为下一个要处理的方格。它的外框用蓝线打亮。

首先,我们把它从 open list 移到 close list 中 ( 这就是为什么用蓝线打亮的原因了 ) 。然后我们检查与它相邻的方格。它右边的方格是墙壁,我们忽略。它左边的方格是起点,在 close list 中,我们也忽略。其他 4 个相邻的方格均在 open list 中,我们需要检查经由这个方格到达那里的路径是否更好,使用 G 值来判定。让我们看看上面的方格。它现在的 G 值为 14 。如果我们经由当前方格到达那里, G 值将会为 20(其中 10 为到达当前方格的 G 值,此外还要加上从当前方格纵向移动到上面方格的 G 值 10) 。显然 20 比 14 大,因此这不是最优的路径。如果你看图你就会明白。直接从起点沿对角线移动到那个方格比先横向移动再纵向移动要好。

当把 4 个已经在 open list 中的相邻方格都检查后,没有发现经由当前方格的更好路径,因此我们不做任何改变。现在我们已经检查了当前方格的所有相邻的方格,并也对他们作了处理,是时候选择下一个待处理的方格了。

因此再次遍历我们的 open list ,现在它只有 7 个方格了,我们需要选择 F 值最小的那个。有趣的是,这次有两个方格的 F 值都 54 ,选哪个呢?没什么关系。从速度上考虑,选择最后加入 open list 的方格更快。这导致了在寻路过程中,当靠近目标时,优先使用新找到的方格的偏好。但是这并不重要。 ( 对相同数据的不同对待,导致两中版本的 A* 找到等长的不同路径 ) 。

我们选择起点右下方的方格,如下图所示。

图 5

这次,当我们检查相邻的方格时,我们发现它右边的方格是墙,忽略之。上面的也一样。

我们把墙下面的一格也忽略掉。为什么?因为如果不穿越墙角的话,你不能直接从当前方格移动到那个方格。你需要先往下走,然后再移动到那个方格,这样来绕过墙角。 ( 注意:穿越墙角的规则是可选的,依赖于你的节点是怎么放置的 )

这样还剩下 5 个相邻的方格。当前方格下面的 2 个方格还没有加入 open list ,所以把它们加入,同时把当前方格设为他们的父亲。在剩下的3 个方格中,有 2 个已经在 close list 中 ( 一个是起点,一个是当前方格上面的方格,外框被加亮的 ) ,我们忽略它们。最后一个方格,也就是当前方格左边的方格,我们检查经由当前方格到达那里是否具有更小的 G 值。没有。因此我们准备从 open list 中选择下一个待处理的方格。

不断重复这个过程,直到把终点也加入到了 open list 中,此时如下图所示。

图 6

注意,在起点下面 2 格的方格的父亲已经与前面不同了。之前它的 G 值是 28 并且指向它右上方的方格。现在它的 G 值为 20 ,并且指向它正上方的方格。这在寻路过程中的某处发生,使用新路径时 G 值经过检查并且变得更低,因此父节点被重新设置, G 和 F 值被重新计算。尽管这一变化在本例中并不重要,但是在很多场合中,这种变化会导致寻路结果的巨大变化。

那么我们怎么样去确定实际路径呢?很简单,从终点开始,按着箭头向父节点移动,这样你就被带回到了起点,这就是你的路径。如下图所示。从起点 A 移动到终点 B 就是简单从路径上的一个方格的中心移动到另一个方格的中心,直至目标。就是这么简单!

图 7

A*算法总结(Summary of the A* Method)

Ok ,现在你已经看完了整个的介绍,现在我们把所有步骤放在一起:

1.         把起点加入 open list 。

2.         重复如下过程:

a.         遍历 open list ,查找 F 值最小的节点,把它作为当前要处理的节点。

b.         把这个节点移到 close list 。

c.         对当前方格的 8 个相邻方格的每一个方格?

◆     如果它是不可抵达的或者它在 close list 中,忽略它。否则,做如下操作。

◆     如果它不在 open list 中,把它加入 open list ,并且把当前方格设置为它的父亲,记录该方格的 F , G 和 H 值。

◆     如果它已经在 open list 中,检查这条路径 ( 即经由当前方格到达它那里 ) 是否更好,用 G 值作参考。更小的 G 值表示这是更好的路径。如果是这样,把它的父亲设置为当前方格,并重新计算它的 G 和 F 值。如果你的 open list 是按 F 值排序的话,改变后你可能需要重新排序。

d.         停止,当你

◆     把终点加入到了 open list 中,此时路径已经找到了,或者

◆     查找终点失败,并且 open list 是空的,此时没有路径。

3.         保存路径。从终点开始,每个方格沿着父节点移动直至起点,这就是你的路径。

上面原文:https://blog.csdn.net/weixin_44489823/article/details/89382502

=============================================================================================

下面是我自己实现的

在实现A*寻路过程中,我自己有几个点绕了好久

1.每一次找到下一个点后,搜索列表里面的点的G是按照起点还是当前点计算

我当前还是按照当前点来计算的,这个我还是有点疑问,需要自己想一想

2.搜索列表里面已有的点,在当前点改变时,如果为当前点的附近点时,他的父节点是否变为当前点

结果是不用的,这个应该是我刚开始没看太明白;只有当前点的下一级点为已有搜索点,并且当前点的索引<下一级点当前的父节点的索引时,才将下一级点的父节点改为当前点

==============================================================================================================================

暂时先这样,后面补充

(今天你加班吗 :> 我不加)

[Unity A*算法]A*算法的简单实现的更多相关文章

  1. kNN算法python实现和简单数字识别

    kNN算法 算法优缺点: 优点:精度高.对异常值不敏感.无输入数据假定 缺点:时间复杂度和空间复杂度都很高 适用数据范围:数值型和标称型 算法的思路: KNN算法(全称K最近邻算法),算法的思想很简单 ...

  2. 简单易学的机器学习算法——EM算法

    简单易学的机器学习算法——EM算法 一.机器学习中的参数估计问题 在前面的博文中,如“简单易学的机器学习算法——Logistic回归”中,采用了极大似然函数对其模型中的参数进行估计,简单来讲即对于一系 ...

  3. 1102: 零起点学算法09——继续练习简单的输入和计算(a-b)

    1102: 零起点学算法09--继续练习简单的输入和计算(a-b) Time Limit: 1 Sec  Memory Limit: 520 MB   64bit IO Format: %lldSub ...

  4. 量化交易中VWAP/TWAP算法的基本原理和简单源码实现(C++和python)(转)

    量化交易中VWAP/TWAP算法的基本原理和简单源码实现(C++和python) 原文地址:http://blog.csdn.net/u012234115/article/details/728300 ...

  5. 数据挖掘经典算法PrefixSpan的一个简单Python实现

    前言 用python实现了一个没有库依赖的"纯" py-based PrefixSpan算法. Github 仓库 https://github.com/Holy-Shine/Pr ...

  6. 数据结构和算法(Golang实现)(1)简单入门Golang-前言

    数据结构和算法在计算机科学里,有非常重要的地位.此系列文章尝试使用 Golang 编程语言来实现各种数据结构和算法,并且适当进行算法分析. 我们会先简单学习一下Golang,然后进入计算机程序世界的第 ...

  7. 数据结构和算法(Golang实现)(2)简单入门Golang-包、变量和函数

    包.变量和函数 一.举个例子 现在我们来建立一个完整的程序main.go: // Golang程序入口的包名必须为 main package main // import "golang&q ...

  8. 数据结构和算法(Golang实现)(3)简单入门Golang-流程控制语句

    流程控制语句 计算机编程语言中,流程控制语句很重要,可以让机器知道什么时候做什么事,做几次.主要有条件和循环语句. Golang只有一种循环:for,只有一种判断:if,还有一种特殊的switch条件 ...

  9. 数据结构和算法(Golang实现)(4)简单入门Golang-结构体和方法

    结构体和方法 一.值,指针和引用 我们现在有一段程序: package main import "fmt" func main() { // a,b 是一个值 a := 5 b : ...

  10. 数据结构和算法(Golang实现)(5)简单入门Golang-接口

    接口 在Golang世界中,有一种叫interface的东西,很是神奇. 一.数据类型 interface{} 如果你事前并不知道变量是哪种数据类型,不知道它是整数还是字符串,但是你还是想要使用它. ...

随机推荐

  1. CSRF与平行越权的区别

    .CSRF攻击者不需要登录,越权攻击者也得登录,只是没有做针对性的控制: .CSRF攻击者自己不访问受攻击页面,诱导受害者在登录被攻击系统后点击攻击页面:越权攻击者可以直接访问受攻击页面: .CSRF ...

  2. 【DNS域名解析命令】 ping

    ping, ping6 - send ICMP ECHO_REQUEST to network hosts ping命令向网络主机发送ICMP回传请求 详细描述: ping使用ICMP协议强制ECHO ...

  3. CSS开发技巧(二):表格合并边框后的单元格宽度计算

    前言: 分离边框模型和合并边框模型是表格的两种模型,它通过以下属性确定: border-collapse:separate(默认值) | collapse | inherit 当采用分离边框模型时,表 ...

  4. P5520 【[yLOI2019] 青原樱】

    P5520 [[yLOI2019] 青原樱]题解 整理博客的时候改了下分类标签,重新审一下 题目传送门 翻了翻题解区,发现基本没和我写的一样的(主要是都比我的写的简单 看题目: 第一眼,数学题:第二眼 ...

  5. Jenkins如何进行权限管理

    一.安装插件 插件名:Role-based Authorization Strategy 二.配置授权策略 三.创建用户 四.添加并配置权限 4.1.添加Global Role 普通角色拥有全局只读权 ...

  6. C - A Plug for UNIX POJ - 1087 网络流

    You are in charge of setting up the press room for the inaugural meeting of the United Nations Inter ...

  7. 将csv文件导入sql数据库

    有一个csv文件需要导入到Sql数据库中,其格式为 “adb”,"dds","sdf" “adb”,"dds","sdf" ...

  8. 【Hadoop离线基础总结】linux基础增强

    linux基础增强 查找命令 grep命令  (print lines matching a pattern) 概述: grep命令是一种强大的文本搜索工具,它能使用正则表达式搜索文本,并把匹配的行打 ...

  9. 【Hadoop离线基础总结】Hive调优手段

    Hive调优手段 最常用的调优手段 Fetch抓取 MapJoin 分区裁剪 列裁剪 控制map个数以及reduce个数 JVM重用 数据压缩 Fetch的抓取 出现原因 Hive中对某些情况的查询不 ...

  10. 数学建模(二)优劣解距离法Topsis模型部分

    步骤: (一)统一指标类型:指标正向化(转化为极大型)(论文) 越大越好极大型指标,效益型指标 越小越好极小型指标,成本型指标 max-x,max=max{xi} 落在某个区间[a,b]是最好的,区间 ...