Nastya received a gift on New Year — a magic wardrobe. It is magic because in the end of each month the number of dresses in it doubles (i.e. the number of dresses becomes twice as large as it is in the beginning of the month).

Unfortunately, right after the doubling the wardrobe eats one of the dresses (if any) with the 50% probability. It happens every month except the last one in the year.

Nastya owns x dresses now, so she became interested in the expected number of dresses she will have in one year. Nastya lives in Byteland, so the year lasts for k + 1 months.

Nastya is really busy, so she wants you to solve this problem. You are the programmer, after all. Also, you should find the answer modulo 109 + 7, because it is easy to see that it is always integer.

Input

The only line contains two integers x and k (0 ≤ x, k ≤ 1018), where x is the initial number of dresses and k + 1 is the number of months in a year in Byteland.

Output

In the only line print a single integer — the expected number of dresses Nastya will own one year later modulo 109 + 7.

Examples

Input

2 0

Output

4

Input

2 1

Output

7

Input

3 2

Output

21

Note

In the first example a year consists on only one month, so the wardrobe does not eat dresses at all.

In the second example after the first month there are 3 dresses with 50% probability and 4 dresses with 50% probability. Thus, in the end of the year there are 6 dresses with 50% probability and 8 dresses with 50% probability. This way the answer for this test is (6 + 8) / 2 = 7.

这个题画个图就能看出来,如果不考虑最后一天则,前面是个连续的序列。那么最后要求和取平均的过程,换成等差数列求和再取平均。然后化简完就是(2∗a−1)2b+1(2*a-1)2^{b}+1(2∗a−1)2b+1,害怕快速幂超时,可以十进制快速幂,也可以欧拉降幂。

#include <bits/stdc++.h>
using namespace std;
template <typename t>
void read(t &x)
{
char ch = getchar();
x = 0;
t f = 1;
while (ch < '0' || ch > '9')
f = (ch == '-' ? -1 : f), ch = getchar();
while (ch >= '0' && ch <= '9')
x = x * 10 + ch - '0', ch = getchar();
x *= f;
} #define wi(n) printf("%d ", n)
#define wl(n) printf("%lld ", n)
#define rep(m, n, i) for (int i = m; i < n; ++i)
#define rrep(m, n, i) for (int i = m; i > n; --i)
#define P puts(" ")
typedef long long ll;
#define MOD 1000000007
#define mp(a, b) make_pair(a, b)
#define N 10005
#define fil(a, n) rep(0, n, i) read(a[i])
//---------------https://lunatic.blog.csdn.net/-------------------//
const ll phi = 1000000006; //1e9+7的欧拉函数
ll fast_pow(ll a, ll b, ll p)
{
ll ret = 1;
for (; b; b >>= 1, a = a * a % p)
if (b & 1)
ret = ret * a % p;
return ret;
}
int main()
{
ll a, b,c;
read(a), read(b);
if (b >= phi)
b = b % phi + phi; //欧拉降幂
ll s1 = fast_pow(2, b, MOD);
cout<<((((2*a)%MOD-1)*s1)+1+MOD)%MOD<<endl;
}

CF思维联系– CodeForces -CodeForces - 992C Nastya and a Wardrobe(欧拉降幂+快速幂)的更多相关文章

  1. CodeForces 992C Nastya and a Wardrobe(规律、快速幂)

    http://codeforces.com/problemset/problem/992/C 题意: 给你两个数x,k,k代表有k+1个月,x每个月可以增长一倍,增长后的下一个月开始时x有50%几率减 ...

  2. Codeforces Round #536 (Div. 2) F 矩阵快速幂 + bsgs(新坑) + exgcd(新坑) + 欧拉降幂

    https://codeforces.com/contest/1106/problem/F 题意 数列公式为\(f_i=(f^{b_1}_{i-1}*f^{b_2}_{i-2}*...*f^{b_k} ...

  3. CodeForces - 906D Power Tower(欧拉降幂定理)

    Power Tower CodeForces - 906D 题目大意:有N个数字,然后给你q个区间,要你求每一个区间中所有的数字从左到右依次垒起来的次方的幂对m取模之后的数字是多少. 用到一个新知识, ...

  4. Codeforces Round #454 (Div. 1) CodeForces 906D Power Tower (欧拉降幂)

    题目链接:http://codeforces.com/contest/906/problem/D 题目大意:给定n个整数w[1],w[2],……,w[n],和一个数m,然后有q个询问,每个询问给出一个 ...

  5. Codeforces Round #257 (Div. 2) B. Jzzhu and Sequences (矩阵快速幂)

    题目链接:http://codeforces.com/problemset/problem/450/B 题意很好懂,矩阵快速幂模版题. /* | 1, -1 | | fn | | 1, 0 | | f ...

  6. codeforces E. Okabe and El Psy Kongroo(dp+矩阵快速幂)

    题目链接:http://codeforces.com/contest/821/problem/E 题意:我们现在位于(0,0)处,目标是走到(K,0)处.每一次我们都可以从(x,y)走到(x+1,y- ...

  7. CodeForces 906D (欧拉降幂)

    Power Tower •题意 求$w_{l}^{w_{l+1}^{w_{l+2}^{w_{l+3}^{w_{l+4}^{w_{l+5}^{...^{w_{r}}}}}}}}$ 对m取模的值 •思路 ...

  8. Codeforces 992C Nastya and a Wardrobe (思维)

    <题目链接> 题目大意: 你开始有X个裙子 你有K+1次增长机会 前K次会100%的增长一倍 但是增长后有50%的机会会减少一个 给你X,K(0<=X,K<=1e18), 问你 ...

  9. Codeforces 785D - Anton and School - 2 - [范德蒙德恒等式][快速幂+逆元]

    题目链接:https://codeforces.com/problemset/problem/785/D 题解: 首先很好想的,如果我们预处理出每个 "(" 的左边还有 $x$ 个 ...

随机推荐

  1. Java第十七天,Set接口

    Set接口 1.特点 (1)不包含重复元素. (2)没有索引. (3)继承自Collection接口,所以Collection接口中的所有方法都适用于Set接口. 2.解析 (1)为什么不能包含重复元 ...

  2. javascript入门 之 zTree(十四 增删查改)(一)

    <!DOCTYPE html> <HTML> <HEAD> <TITLE> ZTREE DEMO - beforeEditName / beforeRe ...

  3. Linux 下如何隐藏自己不被发现?

    可能在某些情况下,自己运行的程序不想或者不方便被其他人看到,就需要隐藏运行的进程.或者某些攻击者采用了本文介绍的隐藏技术,也可以让大家看到如何进行对抗. 隐藏有两种方法: kernel 层面,不对用户 ...

  4. win下youtube-dl 【ERROR: requested format not available】选下载视频质量的坑--【值得一看】

    需求说明(bug出处): 简单说:下载youtube的视频,嵌入翻译好的中文字幕. 详细说(可略过): 阿里的海外服务器需要布一个Web Service---用以接收国内(本地服务器)的请求, 然后用 ...

  5. 这可能是 Github 上最全面的 Flutter 教程

    引语 晚上好,我是猫咪,我的公众号「程序媛猫咪」会推荐 GitHub 上好玩的项目,挖掘开源的价值,欢迎关注我. 刚下班到家,金三银四,虽然今天行情尤其地不好,但身边的同事也是走了一波,不免会受到影响 ...

  6. 如何在云开发静态托管中使用Hugo

    如何在云开发静态托管中使用Hugo 介绍 hugo是一个用Go编写的静态站点生成器,由于具有丰富的主题资源和有比较丰富的主题资源和较好的生成速度. 云开发(CloudBase)是一款云端一体化的产品方 ...

  7. 记一次Windows蓝屏分析

    大半夜收到此类信息,应该是让所有系统管理员最头大的事情了 首先我快速通过iDRAC,发现服务器发生了重启操作,并得到相关日志信息 通过Dell的官方解释,确定了该问题是OS层面的异常导致.打开Wind ...

  8. Apache与PHP的配置

    Listen 表示端口号 ServerName 表示域名 <Directory 路径> 表示默认开放的路径 <IfModule dir_module> 表示默认显示的文件名 & ...

  9. 面试问了解Linux内存管理吗?10张图给你安排的明明白白!

    文章每周持续更新,各位的「三连」是对我最大的肯定.可以微信搜索公众号「 后端技术学堂 」第一时间阅读(一般比博客早更新一到两篇) 今天来带大家研究一下Linux内存管理.对于精通 CURD 的业务同学 ...

  10. python操作MySQL数据库报错问题解决

    编写好Python操作数据库的脚本后,运行报错如下: 报错1:“AttributeError: 'NoneType' object has no attribute 'encoding'” 解决办法: ...