Nastya received a gift on New Year — a magic wardrobe. It is magic because in the end of each month the number of dresses in it doubles (i.e. the number of dresses becomes twice as large as it is in the beginning of the month).

Unfortunately, right after the doubling the wardrobe eats one of the dresses (if any) with the 50% probability. It happens every month except the last one in the year.

Nastya owns x dresses now, so she became interested in the expected number of dresses she will have in one year. Nastya lives in Byteland, so the year lasts for k + 1 months.

Nastya is really busy, so she wants you to solve this problem. You are the programmer, after all. Also, you should find the answer modulo 109 + 7, because it is easy to see that it is always integer.

Input

The only line contains two integers x and k (0 ≤ x, k ≤ 1018), where x is the initial number of dresses and k + 1 is the number of months in a year in Byteland.

Output

In the only line print a single integer — the expected number of dresses Nastya will own one year later modulo 109 + 7.

Examples

Input

2 0

Output

4

Input

2 1

Output

7

Input

3 2

Output

21

Note

In the first example a year consists on only one month, so the wardrobe does not eat dresses at all.

In the second example after the first month there are 3 dresses with 50% probability and 4 dresses with 50% probability. Thus, in the end of the year there are 6 dresses with 50% probability and 8 dresses with 50% probability. This way the answer for this test is (6 + 8) / 2 = 7.

这个题画个图就能看出来,如果不考虑最后一天则,前面是个连续的序列。那么最后要求和取平均的过程,换成等差数列求和再取平均。然后化简完就是(2∗a−1)2b+1(2*a-1)2^{b}+1(2∗a−1)2b+1,害怕快速幂超时,可以十进制快速幂,也可以欧拉降幂。

#include <bits/stdc++.h>
using namespace std;
template <typename t>
void read(t &x)
{
char ch = getchar();
x = 0;
t f = 1;
while (ch < '0' || ch > '9')
f = (ch == '-' ? -1 : f), ch = getchar();
while (ch >= '0' && ch <= '9')
x = x * 10 + ch - '0', ch = getchar();
x *= f;
} #define wi(n) printf("%d ", n)
#define wl(n) printf("%lld ", n)
#define rep(m, n, i) for (int i = m; i < n; ++i)
#define rrep(m, n, i) for (int i = m; i > n; --i)
#define P puts(" ")
typedef long long ll;
#define MOD 1000000007
#define mp(a, b) make_pair(a, b)
#define N 10005
#define fil(a, n) rep(0, n, i) read(a[i])
//---------------https://lunatic.blog.csdn.net/-------------------//
const ll phi = 1000000006; //1e9+7的欧拉函数
ll fast_pow(ll a, ll b, ll p)
{
ll ret = 1;
for (; b; b >>= 1, a = a * a % p)
if (b & 1)
ret = ret * a % p;
return ret;
}
int main()
{
ll a, b,c;
read(a), read(b);
if (b >= phi)
b = b % phi + phi; //欧拉降幂
ll s1 = fast_pow(2, b, MOD);
cout<<((((2*a)%MOD-1)*s1)+1+MOD)%MOD<<endl;
}

CF思维联系– CodeForces -CodeForces - 992C Nastya and a Wardrobe(欧拉降幂+快速幂)的更多相关文章

  1. CodeForces 992C Nastya and a Wardrobe(规律、快速幂)

    http://codeforces.com/problemset/problem/992/C 题意: 给你两个数x,k,k代表有k+1个月,x每个月可以增长一倍,增长后的下一个月开始时x有50%几率减 ...

  2. Codeforces Round #536 (Div. 2) F 矩阵快速幂 + bsgs(新坑) + exgcd(新坑) + 欧拉降幂

    https://codeforces.com/contest/1106/problem/F 题意 数列公式为\(f_i=(f^{b_1}_{i-1}*f^{b_2}_{i-2}*...*f^{b_k} ...

  3. CodeForces - 906D Power Tower(欧拉降幂定理)

    Power Tower CodeForces - 906D 题目大意:有N个数字,然后给你q个区间,要你求每一个区间中所有的数字从左到右依次垒起来的次方的幂对m取模之后的数字是多少. 用到一个新知识, ...

  4. Codeforces Round #454 (Div. 1) CodeForces 906D Power Tower (欧拉降幂)

    题目链接:http://codeforces.com/contest/906/problem/D 题目大意:给定n个整数w[1],w[2],……,w[n],和一个数m,然后有q个询问,每个询问给出一个 ...

  5. Codeforces Round #257 (Div. 2) B. Jzzhu and Sequences (矩阵快速幂)

    题目链接:http://codeforces.com/problemset/problem/450/B 题意很好懂,矩阵快速幂模版题. /* | 1, -1 | | fn | | 1, 0 | | f ...

  6. codeforces E. Okabe and El Psy Kongroo(dp+矩阵快速幂)

    题目链接:http://codeforces.com/contest/821/problem/E 题意:我们现在位于(0,0)处,目标是走到(K,0)处.每一次我们都可以从(x,y)走到(x+1,y- ...

  7. CodeForces 906D (欧拉降幂)

    Power Tower •题意 求$w_{l}^{w_{l+1}^{w_{l+2}^{w_{l+3}^{w_{l+4}^{w_{l+5}^{...^{w_{r}}}}}}}}$ 对m取模的值 •思路 ...

  8. Codeforces 992C Nastya and a Wardrobe (思维)

    <题目链接> 题目大意: 你开始有X个裙子 你有K+1次增长机会 前K次会100%的增长一倍 但是增长后有50%的机会会减少一个 给你X,K(0<=X,K<=1e18), 问你 ...

  9. Codeforces 785D - Anton and School - 2 - [范德蒙德恒等式][快速幂+逆元]

    题目链接:https://codeforces.com/problemset/problem/785/D 题解: 首先很好想的,如果我们预处理出每个 "(" 的左边还有 $x$ 个 ...

随机推荐

  1. Scrapy-01-追踪爬取

    目的:利用scrapy完成盗墓笔记小说的抓取 创建项目: scrapy   startproject    books cd  books scrapy   genspider    dmbj 编写p ...

  2. (js描述的)数据结构[哈希表1.3](10)

    1.哈希表的完善 1.容量质数(limit):需要恒为质数,来确保元素的均匀分布. 1)普通算法: 判断一个数是否为质数 function isPrime(num) { for (var i = 2; ...

  3. Linux网络安全篇,配置Yum源(二),阿里Yum源

    官网教程: https://opsx.alibaba.com/mirror 1.下载配置文件到 /etc/yum.repos.d 目录 wget -O /etc/yum.repos.d/CentOS- ...

  4. MySQL学习之路8-关联子查询

    参考文章https://zhuanlan.zhihu.com/p/41844742 成绩表如下Score: 问题:查询科目中成绩大于平均成绩的记录? SELECT * FROM Score WHERE ...

  5. Array(数组)对象-->push() 方法

    1.定义和用法 push() 方法可向数组的末尾添加一个或多个元素,并返回新的长度. 语法: array.push(item1, item2, ..., itemX) 参数:item1, item2, ...

  6. 【乱码问题】IDEA控制台使用了GBK字符集

    什么Tomcat乱码设置IDEA的初始编码,瞎搞 终于在这个帖子看到了真相 https://blog.csdn.net/weixin_42617398/article/details/81806438 ...

  7. Thinking in Java,Fourth Edition(Java 编程思想,第四版)学习笔记(八)之Polymorphism

    Polymorphism is the third essential feature of an object-oriented programming language,after data ab ...

  8. Daily Scrum 12/21/2015

    Process: Zhaoyang: Integrate the oxford Speech API Code to the IOS client and do some UI optimizatio ...

  9. vs 基础

    1     写入 读取: 1)  写入:Console.Write("hello china")                                      光标紧跟 ...

  10. Calendar日历类

    package com.yhqtv.demo02.ThreadPool; import java.util.Calendar; import java.util.Date; /* * java.uti ...