Keywords: 极角排序, Simple Polygon Generation

Given set of points in the plane, your task is to draw a polygon using the points. You have to use all the points. To be more specific, each point of the set has to be a vertex of the polygon, and the polygon must not have any other vertices. No two line segments of the polygon may have any point in common, except for the middle vertex of two consecutive line segments. For example, given the points on the left-hand side, a valid polygon is shown on the right-hand side:

题意:

​ 给了一组无序的平面点集,目标是构造出一个Simple Polygon, Simple Polygon相比Polygon的定义约束是要求Polygon无边自交(题目也有具体的描述)。

分析:

​ 任意点序列看作一个Polygon。原始序列满足Simple Polygon的自交约束的对应序列可看作原始序列的特定Comparator下的排序结果。此处意味着可能存在一种Comparator, 通过其可套用通用的序列排序算法得到目标结果。

​ 答案是对标Convex Hull问题的经典算法Graham Scan的presort子算法,也就是极角排序。极角排序是二维点集有序化的一个经典思路, 普通的axis-based sort可看作极点在无穷远处的一个特例, 同时Graham Scan后部分Scan可以直接处理任意的Simple Polygon或小修后处理axis-based sorted点序列。此时有某种直观指引: 通过Graham Scan的微修版presort可以解决Simple Polygon的构造问题。

​ 多点共线(且其中一个点为极点)是极角排序需要补充定义进行处理的特殊情况, Graham Scan可将多点共线的处理延迟至Scan的实现上。补充多点共线点的偏序定义为极径增序,特例为入度方向相邻的共线区间为极径减序。

Why Impossible? All the Points are in a same line.

Code:

#include <iostream>
#include <array>
#include <vector>
#include <algorithm>
#include <iterator>
using namespace std; namespace cglib {
template <class Type = int>
struct Vec2{
Type x, y;
Vec2(){}
Vec2(Type _x, Type _y): x(_x), y(_y){}
bool operator < (const Vec2& rhs) {
return y == rhs.y ? x < rhs.x : y < rhs.y;
} Vec2 operator - (const Vec2& rhs) const {
return Vec2(rhs.x - x, rhs.y - y);
} double length2() const {
return x * x + y * y;
}
};
using vec2i = Vec2<int>; template <class Type>
int to_left_test(const Type p, const Type q, const Type s) {
int x = _Area(p, q, s);
return x == 0 ? -1: x > 0;
} template <class Type>
int _Area(const Type& p, const Type& q, const Type& s) {
return p.x * q.y - p.y * q.x +
q.x * s.y - q.y * s.x +
s.x * p.y - s.y * p.x;
} bool graham_presort(std::vector<vec2i>& P, std::vector<int>& idx) {
std::swap(idx[0], idx[std::min_element(P.begin(), P.end())-P.begin()]); bool is_same_line = true;
std::sort(idx.begin()+1, idx.end(), [&](const int& lhs, const int& rhs)->bool{
switch (to_left_test(P[idx[0]], P[lhs], P[rhs])) {
case -1:
return (P[lhs]-P[idx[0]]).length2() < (P[rhs]-P[idx[0]]).length2();
case 0:
is_same_line = false;
return false;
case 1:
is_same_line = false;
return true;
}
});
if(!is_same_line) {
for(int i = idx.size()-2; i > 0; i--) {
if(to_left_test(P[idx[0]], P[*idx.rbegin()], P[idx[i]]) == -1) continue;
std::reverse(idx.begin()+i+1, idx.end());
break;
}
}
return !is_same_line;
}
} int main() {
using namespace cglib;
int T, N; std::cin >> T;
for(int t = 0; t < T; t++) {
std::cin >> N;
std::vector<vec2i> P;
vec2i p;
for(int i = 0; i < N; i++) {
std::cin >> p.x >> p.y;
P.emplace_back(p);
}
std::vector<int> idx(P.size());
for(int i = 0; i < idx.size(); i++) idx[i] = i; std::cout << "Case " << t+1 << ":" << std::endl;
if( !graham_presort(P, idx) ) {
std::cout << "Impossible\n";
}
else {
for(int i = 0; i < idx.size()-1; i++)
std::cout << idx[i] << ' ';
std::cout << *idx.rbegin() << std::endl;
} }
}

Drawing Simple Polygon(Create Simple Polygon from unordered points by angle sorting)的更多相关文章

  1. 46 Simple Python Exercises-Very simple exercises

    46 Simple Python Exercises-Very simple exercises 4.Write a function that takes a character (i.e. a s ...

  2. how to change svg polygon size by update it's points in js

    how to change svg polygon size by update it's points in js matrixTransform https://stackoverflow.com ...

  3. css create 多边形 polygon

    案例:   代码: element.style { width: 0; height: 0; /* border-left: 50px solid transparent; */ border-rig ...

  4. libgdx 裁剪多边形(clip polygon、masking polygon)

    直接放例子代码,代码中以任意四边形为例,如果需要做任意多边形,注意libgdx不能直接用ShapeRender填充多边形,需要先切割成三角形. public static void drawClip( ...

  5. Sass与Compress实战:第三章

    概要:这一章将介绍Compass如何使Web设计中最基础的部分——布局变得简单. 本章内容: ● 网格布局的基本原理以及何时使用网格布局 ● 使用Compass时的CSS网格布局框架选项 ● 使用排版 ...

  6. Java JTS & 空间数据模型

    空间数据模型 判断两个几何图形是否存在指定的空间关系.包括: 相等(equals).分离(disjoint).相交(intersect).相接(touches).交叉(crosses).包含于(wit ...

  7. (二)在实战中使用Sass和Compass

    第三章 无需计算玩转CSS网格布局 3.1 网格布局介绍 3.2 使用网格布局 3.2.1 术语 术语名 定义 是否涉及HTML标签 列 内容度量的垂直单位 否 容器 构成一个网格布局的HTML元素 ...

  8. JTS基本概念和使用

    简介 JTS是加拿大的 Vivid Solutions公司做的一套开放源码的 Java API.它提供了一套空间数据操作的核心算法.为在兼容OGC标准的空间对象模型中进行基础的几何操作提供2D空间谓词 ...

  9. D3、EChart、HighChart绘图demol

    1.echarts:   <!DOCTYPE html>   <html>   <head>   <meta charset="utf-8" ...

随机推荐

  1. 吴裕雄--天生自然 python数据分析:加纳卫生设施数据分析

    import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.rea ...

  2. [PyTorch入门]之从示例中学习PyTorch

    Learning PyTorch with examples 来自这里. 本教程通过自包含的示例来介绍PyTorch的基本概念. PyTorch的核心是两个主要功能: 可在GPU上运行的,类似于num ...

  3. kafka&&kafka-manager部署安装

    一.zk集群部署 二.kafka部署安装 1.创建kafka用户和日志路径,(直接执行) groupadd kafka useradd -g kafka kafka mkdir -p /web/kaf ...

  4. Python 爬虫 selenium 笔记

    1. selenium 安装, 与文档 pip install selenium Selenium with Python中文翻译文档 selenium官网英文文档 2. selenium 的第一个示 ...

  5. 爬虫(一)爬取鱼c淘贴信息

    掏出了以前的小练习: 现在开始,每天复习下以前的爬虫练习,争取发现新的问题和可以优化的地方. # -*- coding:utf-8 -*- import requests import chardet ...

  6. Java基础--选择排序

    每一趟从待排序的数据元素中选出最小(或最大的)一个元素, 顺序放在已排好的序的数列的最后,直到全部待排序的数据元素排完. 选择排序是不稳定的排序方法. 选择排序的时间复杂度为 O(n^2). 第一次需 ...

  7. apache搭建Tomcat集群(Cluster)

    搭建集群: apache:特点处理静态资源(html  图片  js等) apache的请求操作,Cluster工具 tomcat:特点处理动态资源 apache+tomcat(apache是web服 ...

  8. disruptor 入门 一

    一.disruptor基本概念 https://www.cnblogs.com/haiq/p/4112689.html 二.disruptor入门程序 导入disruptor包 <depende ...

  9. jquery 获取css3 transform 值

    最近写了个旋转,有要求获取transform值.当看到console.log($("#id").css("transform"))的值的时候,我的内心是崩溃的 ...

  10. 【音视频连载-001】基础学习篇- SDL 介绍以及工程配置

    技术开发故事会连载 这是音视频基础学习系列的第一篇文章,主要讲解 SDL 是什么以及为什么要用到它,看似和音视频没啥卵关系,其实必不可少. SDL 简介 SDL 是 "Simple Dire ...