Hive级联求和


  • 建表
    CREATE TABLE t_salary_detail(
    username string,
    month string,
    salary INT )
    ROW format delimited FIELDS TERMINATED BY ',';
  • 导入数据
    LOAD DATA LOCAL inpath '/export/servers/hivedatas/click-part-r-00000' INTO TABLE t_salary_detail;
    +---------------------------+------------------------+-------------------------+--+
    | t_salary_detail.username | t_salary_detail.month | t_salary_detail.salary |
    +---------------------------+------------------------+-------------------------+--+
    | A | 2015-01 | 5 |
    | A | 2015-01 | 15 |
    | B | 2015-01 | 5 |
    | A | 2015-01 | 8 |
    | B | 2015-01 | 25 |
    | A | 2015-01 | 5 |
    | A | 2015-02 | 4 |
    | A | 2015-02 | 6 |
    | B | 2015-02 | 10 |
    | B | 2015-02 | 5 |
    | A | 2015-03 | 7 |
    | A | 2015-03 | 9 |
    | B | 2015-03 | 11 |
    | B | 2015-03 | 6 |
    +---------------------------+------------------------+-------------------------+--+

  • 思路

    累积求和其实就是通过inner join表本身来实现。首先要先明白 统计每个用户每个月总共获得多少小费 的hql语句怎么写
    SELECT username,month,sum(salary)
    FROM t_salary_detail
    GROUP BY username,month;
    +-----------+----------+------+--+
    | username | month | _c2 |
    +-----------+----------+------+--+
    | A | 2015-01 | 33 |
    | A | 2015-02 | 10 |
    | A | 2015-03 | 16 |
    | B | 2015-01 | 30 |
    | B | 2015-02 | 15 |
    | B | 2015-03 | 17 |
    +-----------+----------+------+--+

    现在通过inner join连接自己

    SELECT a.*,b.*
    FROM (
    SELECT username,month,sum(salary)
    FROM t_salary_detail
    GROUP BY username,month ) a
    INNER JOIN (
    SELECT username,month,sum(salary)
    FROM t_salary_detail
    GROUP BY username,month ) b
    ON a.username = b.username;
    +-------------+----------+--------+-------------+----------+--------+--+
    | a.username | a.month | a._c2 | b.username | b.month | b._c2 |
    +-------------+----------+--------+-------------+----------+--------+--+
    | A | 2015-01 | 33 | A | 2015-01 | 33 |
    | A | 2015-01 | 33 | A | 2015-02 | 10 |
    | A | 2015-01 | 33 | A | 2015-03 | 16 |
    | A | 2015-02 | 10 | A | 2015-01 | 33 |
    | A | 2015-02 | 10 | A | 2015-02 | 10 |
    | A | 2015-02 | 10 | A | 2015-03 | 16 |
    | A | 2015-03 | 16 | A | 2015-01 | 33 |
    | A | 2015-03 | 16 | A | 2015-02 | 10 |
    | A | 2015-03 | 16 | A | 2015-03 | 16 |
    | B | 2015-01 | 30 | B | 2015-01 | 30 |
    | B | 2015-01 | 30 | B | 2015-02 | 15 |
    | B | 2015-01 | 30 | B | 2015-03 | 17 |
    | B | 2015-02 | 15 | B | 2015-01 | 30 |
    | B | 2015-02 | 15 | B | 2015-02 | 15 |
    | B | 2015-02 | 15 | B | 2015-03 | 17 |
    | B | 2015-03 | 17 | B | 2015-01 | 30 |
    | B | 2015-03 | 17 | B | 2015-02 | 15 |
    | B | 2015-03 | 17 | B | 2015-03 | 17 |
    +-------------+----------+--------+-------------+----------+--------+--+

    得到以上结果可以看出,我们可以利用b表的salary列来进行累积求和,因为我们要求每个用户每个月总共获得小费,到2月份是要将2月和前一个月的小费累计,也就是表中33,33+10,33+10+16这样

    SELECT a.*,b.*
    FROM (
    SELECT username,month,sum(salary)
    FROM t_salary_detail
    GROUP BY username,month ) a
    INNER JOIN (
    SELECT username,month,sum(salary)
    FROM t_salary_detail
    GROUP BY username,month ) b
    ON a.username = b.username
    WHERE b.month <= a.month;
    +-------------+----------+--------+-------------+----------+--------+--+
    | a.username | a.month | a._c2 | b.username | b.month | b._c2 |
    +-------------+----------+--------+-------------+----------+--------+--+
    | A | 2015-01 | 33 | A | 2015-01 | 33 |
    | A | 2015-02 | 10 | A | 2015-01 | 33 |
    | A | 2015-02 | 10 | A | 2015-02 | 10 |
    | A | 2015-03 | 16 | A | 2015-01 | 33 |
    | A | 2015-03 | 16 | A | 2015-02 | 10 |
    | A | 2015-03 | 16 | A | 2015-03 | 16 |
    | B | 2015-01 | 30 | B | 2015-01 | 30 |
    | B | 2015-02 | 15 | B | 2015-01 | 30 |
    | B | 2015-02 | 15 | B | 2015-02 | 15 |
    | B | 2015-03 | 17 | B | 2015-01 | 30 |
    | B | 2015-03 | 17 | B | 2015-02 | 15 |
    | B | 2015-03 | 17 | B | 2015-03 | 17 |
    +-------------+----------+--------+-------------+----------+--------+--+

    得到以上结果后,只需要按照Month分组,对salary列用SUM函数即可

    SELECT SUM(bSalSum)
    FROM (
    SELECT a.month AS aMonth,a.username AS aUser,a.salSum AS aSalSum,
    b.month AS bMonth,b.username AS bUser,b.salSum AS bSalSum
    FROM (
    SELECT month,username,SUM(salary) AS salSum
    FROM t_salary_detail
    GROUP BY username,month ) a
    INNER JOIN (
    SELECT month,username,SUM(salary) AS salSum
    FROM t_salary_detail
    GROUP BY username,month ) b
    ON a.username = b.username
    WHERE b.month <= a.month ) t
    GROUP BY aUser,aMonth;
    +------+--+
    | _c0 |
    +------+--+
    | 33 |
    | 43 |
    | 59 |
    | 30 |
    | 45 |
    | 62 |
    +------+--+

【Hadoop离线基础总结】Hive级联求和的更多相关文章

  1. 【Hadoop离线基础总结】Hive调优手段

    Hive调优手段 最常用的调优手段 Fetch抓取 MapJoin 分区裁剪 列裁剪 控制map个数以及reduce个数 JVM重用 数据压缩 Fetch的抓取 出现原因 Hive中对某些情况的查询不 ...

  2. 【Hadoop离线基础总结】流量日志分析网站整体架构模块开发

    目录 数据仓库设计 维度建模概述 维度建模的三种模式 本项目中数据仓库的设计 ETL开发 创建ODS层数据表 导入ODS层数据 生成ODS层明细宽表 统计分析开发 流量分析 受访分析 访客visit分 ...

  3. 【Hadoop离线基础总结】oozie的安装部署与使用

    目录 简单介绍 概述 架构 安装部署 1.修改core-site.xml 2.上传oozie的安装包并解压 3.解压hadooplibs到与oozie平行的目录 4.创建libext目录,并拷贝依赖包 ...

  4. 【Hadoop离线基础总结】Hue的简单介绍和安装部署

    目录 Hue的简单介绍 概述 核心功能 安装部署 下载Hue的压缩包并上传到linux解压 编译安装启动 启动Hue进程 hue与其他框架的集成 Hue与Hadoop集成 Hue与Hive集成 Hue ...

  5. 【Hadoop离线基础总结】impala简单介绍及安装部署

    目录 impala的简单介绍 概述 优点 缺点 impala和Hive的关系 impala如何和CDH一起工作 impala的架构及查询计划 impala/hive/spark 对比 impala的安 ...

  6. 【Hadoop离线基础总结】Sqoop常用命令及参数

    目录 常用命令 常用公用参数 公用参数:数据库连接 公用参数:import 公用参数:export 公用参数:hive 常用命令&参数 从关系表导入--import 导出到关系表--expor ...

  7. Hadoop(分布式系统基础架构)---Hive与HBase区别

    对于刚接触大数据的用户来说,要想区分Hive与HBase是有一定难度的.本文将尝试从其各自的定义.特点.限制.应用场景等角度来进行分析,以作抛砖引玉之用.  Hive是什么? Apache Hive是 ...

  8. 【Hadoop离线基础总结】Hue与Hive集成

    目录 1.更改hue的配置hue.ini 2.启动hive的metastore以及hiveserver2服务 3.启动hue进程,查看Hive是否与Hue集成成功 1.更改hue的配置hue.ini ...

  9. 【Hadoop离线基础总结】Hive的基本操作

    Hive的基本操作 创建数据库与创建数据库表 创建数据库的相关操作 创建数据库:CREATE TABLE IF NOT EXISTS myhive hive创建表成功后的存放位置由hive-site. ...

随机推荐

  1. PLSQL Developer 中文乱码踩坑记

    环境 操作系统版本: Windows 7 PL/SQL 版本: 12.0.1.1814 原因 由于 Oracle 服务器端和客户端字符集编码不一致引起的. 注意点 写在最前面,减少踩坑!!! 网上教程 ...

  2. ASE team work proposal

    Hi,我们是Azure Wrapper,欢迎来到我们的blog~我们将在这里记录下ASE课程的滴滴点点,美妙的旅程就要开始啦! 以下是每位队员提交的关于ASE 团队项目的提议: 朱玉影: 随着信息时代 ...

  3. FZU 2150

    题目大意:有一个矩阵,"."表示石头,"#",表示小草,有两个人,可以在任意两个位置点燃小草,小草可以上下左右蔓延,蔓延一次的时间为1,问所有蔓延完所有小草所花 ...

  4. skynet启动流程及调用服务

     3.基本原理 3.1启动流程  1.skynet-src/skynet_main.c 这个是main()函数所在,主要就是设置一下lua的环境.默认的配置.打开config配置文件,并修改默认配置. ...

  5. JS Math&Date的方法 (下)

    Date - 时间日期对象 一:Date 时间对象 - 它是处理时间日期的 时间日期对象  - js提供了一个专门用来创建日期对象的构造函数 Date          new Date()  这是一 ...

  6. 转:Cookies 和 Session的区别

    转自:http://blog.csdn.net/axin66ok/article/details/6175522 1.cookie 是一种发送到客户浏览器的文本串句柄,并保存在客户机硬盘上,可以用来在 ...

  7. TeamViewer11 万全免费

    下载地址:百度网盘 c4xm TeamViewer 是一款简单易用且功能强大的远程控制软件,它能穿越内网,摆脱路由器或防火墙的限制,任何一方都不需要拥有固定IP地址.让不懂技术的朋友也能远程控制电脑, ...

  8. SVM家族(一)

    SVM家族简史 故事要从20世纪50年代说起,1957年,一个叫做感知器的模型被提出, 1963年, Vapnikand Chervonenkis, 提出了最大间隔分类器,SVM诞生了. 1992年, ...

  9. GC日志分析详解

    点击返回上层目录 原创声明:作者:Arnold.zhao 博客园地址:https://www.cnblogs.com/zh94 GC日志分析详解 以ParallelGC为例,YoungGC日志解释如下 ...

  10. php 可变变量 $$name

    //可变变量 $name = 'abc'; $$name = '; echo $name . "<br/>"; // abc echo $$name . echo $a ...