估计量|估计值|矩估计|最大似然估计|无偏性|无偏化|有效性|置信区间|枢轴量|似然函数|伯努利大数定理|t分布|单侧置信区间|抽样函数|
第二章 置信区间估计
估计量和估计值的写法?
估计值希腊字母上边有一个hat
点估计中矩估计的原理?
用样本矩来估计总体矩,用样本矩的连续函数来估计总体矩的连续函数,这种估计法称为矩估计法。Eg:如果一阶矩则样本均值估计总体均值
公式化之后的表达:
其中的μ1的表达式:
矩估计和最大似然估计最终估计的特点是什么?
二项分布的均值两种估计都相同,正态分布的均值两种估计都相同。但是其他分布仍存在不同的现象。
无偏性是什么?
估计值的均值与总体均值相同,除中间值之外的部分是随机误差。
均值的无偏性特殊在哪里?
任何存在期望的分布估计均值都是无偏的。
什么是无偏化?
就是利用数学变换得到无偏表达
一个参数可以有不同的无偏估计量吗?
可以。
有效性的主体的是什么?
估计量的方差越小越有效。Eg:估计的总体均值的方差较小则比较有效。
区间估计和点估计谁是具有随机性的?
区间估计。因为点估计是估计一个原始数值,而区间估计是一个原始分布。
置信区间的定义举例解释?
想要估计总体均值,做100次实验,每次实验抽20个样本。处理后得到100个抽样分布区间,有95个区间中存在总体参数,就说有95%的把握认为你只使用一次实验数据的20个样本得到的置信区间中含有总体均值。
枢轴量是什么?
就是参数估计中的待估参数。
求置信区间的三步?
1.样本数据的总体分布2.置信度3.代公式计算
似然函数形式上是什么?
在已知样本来自于何分布之后,虽然不知道该分布中的参数是何值,但是可以反求出,所以一开始用某些字母代替,这样每一个样本x值通过分布率/概率密度对应一个该点概率值,将这些概率值的乘积连乘的结果就是似然函数。
点估计方法的使用顺序?
在统计问题中往往先使用最大似然估计法, 在最大似然估计法使用不方便时, 再用矩估计法。
伯努利大数定理是什么?
当样本量足够大的时候频率趋近于概率。
什么是用t分布的信号?
总体方差未知时
现阶段学习的估计条件是什么?
总体来自正态分布:
哪些问题要考虑单侧置信区间?
在某些实际问题中, 例如, 对于设备、元件的寿命来说, 平均寿命长是我们希望的, 我们关心的是平均寿命 的“下限”; 与之相反, 在考虑产品的废品率 p时, 我们常关心参数 p的 “上限” , 这就引出了单侧置信区间的概念。
对称分布和非对称分布的区别在抽样函数上有何区别?
对称函数的两边界取值是正负相反数即可:
非对称函数的两边界取值要计算两边置信度相关数值:
估计量|估计值|矩估计|最大似然估计|无偏性|无偏化|有效性|置信区间|枢轴量|似然函数|伯努利大数定理|t分布|单侧置信区间|抽样函数|的更多相关文章
- 详解最大似然估计(MLE)、最大后验概率估计(MAP),以及贝叶斯公式的理解
转载声明:本文为转载文章,发表于nebulaf91的csdn博客.欢迎转载,但请务必保留本信息,注明文章出处. 原文作者: nebulaf91 原文原始地址:http://blog.csdn.net/ ...
- 抽样分布|t分布|中心极限定理|点估计|矩估计|最大似然法|
生物统计与实验设计-统计学基础-2&区间估计-1 正态分布参数:均值和方差 其中,选择1d是因为好算:通常,95%区分大概率事件和小概率事件, 当总体是正态分布时,可以利用常用抽样分布估计出样 ...
- 【模式识别与机器学习】——最大似然估计 (MLE) 最大后验概率(MAP)和最小二乘法
1) 极/最大似然估计 MLE 给定一堆数据,假如我们知道它是从某一种分布中随机取出来的,可是我们并不知道这个分布具体的参,即“模型已定,参数未知”.例如,我们知道这个分布是正态分布,但是不知道均值和 ...
- 最大似然估计 (MLE) 最大后验概率(MAP)
1) 最大似然估计 MLE 给定一堆数据,假如我们知道它是从某一种分布中随机取出来的,可是我们并不知道这个分布具体的参,即"模型已定,参数未知". 例如,我们知道这个分布是正态分布 ...
- 最大似然估计 (MLE)与 最大后验概率(MAP)在机器学习中的应用
最大似然估计 MLE 给定一堆数据,假如我们知道它是从某一种分布中随机取出来的,可是我们并不知道这个分布具体的参,即“模型已定,参数未知”. 例如,对于线性回归,我们假定样本是服从正态分布,但是不知道 ...
- 最大似然估计(MLE)与最小二乘估计(LSE)的区别
最大似然估计与最小二乘估计的区别 标签(空格分隔): 概率论与数理统计 最小二乘估计 对于最小二乘估计来说,最合理的参数估计量应该使得模型能最好地拟合样本数据,也就是估计值与观测值之差的平方和最小. ...
- 4.机器学习——统计学习三要素与最大似然估计、最大后验概率估计及L1、L2正则化
1.前言 之前我一直对于“最大似然估计”犯迷糊,今天在看了陶轻松.忆臻.nebulaf91等人的博客以及李航老师的<统计学习方法>后,豁然开朗,于是在此记下一些心得体会. “最大似然估计” ...
- 【机器学习基本理论】详解最大似然估计(MLE)、最大后验概率估计(MAP),以及贝叶斯公式的理解
[机器学习基本理论]详解最大似然估计(MLE).最大后验概率估计(MAP),以及贝叶斯公式的理解 https://mp.csdn.net/postedit/81664644 最大似然估计(Maximu ...
- 最大似然估计(Maximum Likelihood,ML)
先不要想其他的,首先要在大脑里形成概念! 最大似然估计是什么意思?呵呵,完全不懂字面意思,似然是个啥啊?其实似然是likelihood的文言翻译,就是可能性的意思,所以Maximum Likeliho ...
随机推荐
- java排序,效率高的是哪种排序方法
和所有其他语言是一样的.应该还是快速排序效率最高. public static void bubbleSort(int a[]) {int len = a.length;for (int i = 0; ...
- 【LGR-(-8)】洛谷入门赛 #5 题解
比赛链接 9道题. 注:题目名称中链接为题目链接,题号中链接为比赛内链接 题目编号 洛谷题号 题目名称 题目难度 A P5713 [深基3.例5]洛谷团队系统 \(\color{red}{入门}\) ...
- CF1141E Superhero Battle
A superhero fights with a monster. The battle consists of rounds, each of which lasts exactly n minu ...
- oracle数据库常用操作语句 、创建视图
新增字段:alter table 表名 add (NAME VARCHAR(12), NAME NUMBER(10) );--如果添加单个字段可以不用括号包起来,例如 alter table cust ...
- C语言-浮点类型
C语言-浮点类型 浮点类型 在0的两侧有一小块区域,这个区域非常接近0,但是不等于0,是float(表达范围数量级10^-38^)或者double(达范围数量级10^-308^)无法表达的,而0是可以 ...
- javascript实现抽奖程序
昨天开年会的时候看到一个段子说唯品会年会抽奖,结果大奖都被写抽奖程序的部门得了,CTO现场review代码. 简单想了一下抽奖程序的实现,花了十几分钟写了一下,主要用到的知识有数组添加删除,以及ES5 ...
- UVA 11997 The K smallest Sums
给出K*K的矩阵,每一行取一个数,构成K个数的和,总共有 k^k种可能,从中取出前k个最小的. 一开始犯了错,因为只要对每行排序,最小的必定是第一列的和,然后我当时就想着,逐步推进,每次将某行的那个数 ...
- bestphp's revenge
0x00 知识点 1利用PHP原生类来构造POP链 本题没有可以利用的类,没有可以利用的类就找不到POP链所以只能考虑PHP原生类 我们先来解释一下什么是POP链 POP:面向属性编程 在二进制利用时 ...
- POJ - 3658 Artificial Lake
题意:向N个连续且高度不同的平台灌水,平台各有宽度,且高度各不相同.一开始,先向高度最低的平台灌水,直到灌满溢出,流向其他的平台,直至所有平台都被覆盖.已知每分钟注入高度为1且宽度为1的水,问每个平台 ...
- jquery的读、写、增、删、查方法
# 注:jquery需要导包 格式<script type="text/javascript" src="jquery-3.2.1.js">> ...