@atcoder - AGC018F@ Two Trees
@description@
给定两棵树 A, B。现你需要构造一组值 (X1, X2, ..., XN)(两棵树编号相同的点对应权值相同),使得两棵树内任意子树的权值和的绝对值为 1。
无解输出 IMPOSSIBLE。
@solution@
由于权值和为 1,可以推算出每个结点的奇偶性。如果两棵树中同一结点权值奇偶性不同则无解。
考虑已知每个结点权值的奇偶性之后是否能够构造出一组解。
既然是构造题,从简原则,猜想偶点总是为 0,奇点总是为 1 或 -1。
手玩一下样例发现是对的。
那么相当于给每个奇点染黑白色,使得每棵子树内黑白点个数相差为 1。
然后就开始玄幻起来了。我们对于每个奇点 i,在两棵树 A, B 的结点 Ai, Bi 之间连一条边。
注意到此时新图中只有两棵树的根度数可能为奇数,所以我们从根出发跑欧拉路径。
如果欧拉路径中 Ai->Bi 则 i 为黑点(-1),否则 i 为白点(1)。
正确性理解起来不难:对于每个连通块(子树),进入连通块的广义 “入度” 与从连通块出的广义 “出度” 是相等的。
而子树向外只有两类边:连向父亲(只有一条);连向另一棵树。也就是连向另一棵树的边(奇点之间的边)入边与出边相差 1,就是我们的构造目标。
@accepted code@
#include <cstdio>
const int MAXN = 200000;
const int MAXM = 8*MAXN;
struct edge{
int to; bool tag;
edge *nxt, *rev;
}edges[MAXM + 5], *adj[MAXN + 5], *ecnt = edges;
void addedge(int u, int v) {
edge *p = (++ecnt), *q = (++ecnt);
p->to = v, p->tag = false, p->nxt = adj[u], adj[u] = p;
q->to = u, q->tag = false, q->nxt = adj[v], adj[v] = q;
p->rev = q, q->rev = p;
}
int X[MAXN + 5], N;
void dfs(int x) {
for(;adj[x];) {
edge *p = adj[x]; adj[x] = adj[x]->nxt;
if( p->tag ) continue;
p->tag = p->rev->tag = true;
dfs(p->to);
if( x - p->to == -N ) X[x] = -1;
else if( x - p->to == N ) X[p->to] = 1;
}
}
int cnt[2][MAXN + 5];
int main() {
scanf("%d", &N);
int rt1;
for(int i=1;i<=N;i++) {
int x; scanf("%d", &x);
if( x != -1 ) {
addedge(x, i);
cnt[0][x]++;
}
else rt1 = i;
}
for(int i=1;i<=N;i++) {
int x; scanf("%d", &x);
if( x != -1 ) {
addedge(x + N, i + N);
cnt[1][x]++;
}
}
for(int i=1;i<=N;i++) {
if( (cnt[0][i] - cnt[1][i]) & 1 ) {
puts("IMPOSSIBLE");
return 0;
}
if( !(cnt[0][i] & 1) )
addedge(i, N + i);
}
dfs(rt1);
puts("POSSIBLE");
for(int i=1;i<=N;i++)
printf("%d%c", X[i], (i == N ? '\n' : ' '));
}
@details@
仿佛发现了比网络流建模更难的东西.jpg。
不愧是 AGC,轻易就出了一道人类智慧题。
有一个小细节:整棵树作为一棵子树,是没有向上连向父亲的边的。所以证明时还要特殊讨论一下(不过总之证得出来)。
@atcoder - AGC018F@ Two Trees的更多相关文章
- AGC018F - Two Trees
题意 有两棵节点数均为 n 的有根树,你需要构造一个序列 \(X_1,X_2,...,X_n\).使得对于每一棵树的每一个节点, 若令它所有的后代(包括它本身)为 \(a_1,a_2,...,a_k\ ...
- 【AGC018F】Two Trees 构造 黑白染色
题目描述 有两棵有根树,顶点的编号都是\(1\)~\(n\). 你要给每个点一个权值\(a_i\),使得对于两棵树的所有顶点\(x\),满足\(|x\)的子树的权值和\(|=1\) \(n\leq 1 ...
- AtCoder Grand Contest 001 C Shorten Diameter 树的直径知识
链接:http://agc001.contest.atcoder.jp/tasks/agc001_c 题解(官方): We use the following well-known fact abou ...
- Atcoder Grand-014 Writeup
A - Cookie Exchanges 题面 Takahashi, Aoki and Snuke love cookies. They have A, B and C cookies, respec ...
- AtCoder Beginner Contest 115 题解
题目链接:https://abc115.contest.atcoder.jp/ A Christmas Eve Eve Eve 题目: Time limit : 2sec / Memory limit ...
- [C#] C# 知识回顾 - 表达式树 Expression Trees
C# 知识回顾 - 表达式树 Expression Trees 目录 简介 Lambda 表达式创建表达式树 API 创建表达式树 解析表达式树 表达式树的永久性 编译表达式树 执行表达式树 修改表达 ...
- hdu2848 Visible Trees (容斥原理)
题意: 给n*m个点(1 ≤ m, n ≤ 1e5),左下角的点为(1,1),右上角的点(n,m),一个人站在(0,0)看这些点.在一条直线上,只能看到最前面的一个点,后面的被档住看不到,求这个人能看 ...
- [LeetCode] Minimum Height Trees 最小高度树
For a undirected graph with tree characteristics, we can choose any node as the root. The result gra ...
- [LeetCode] Unique Binary Search Trees 独一无二的二叉搜索树
Given n, how many structurally unique BST's (binary search trees) that store values 1...n? For examp ...
随机推荐
- zz MySQL redo log及recover过程浅析
原作地址:http://www.cnblogs.com/liuhao/p/3714012.html 写在前面:作者水平有限,欢迎不吝赐教,一切以最新源码为准. InnoDB redo log 首先介绍 ...
- PAT-1059 Prime Factors (素数因子)
1059. Prime Factors Given any positive integer N, you are supposed to find all of its prime factors, ...
- PAT-1056 Mice and Rice (分组决胜问题)
1056. Mice and Rice Mice and Rice is the name of a programming contest in which each programmer must ...
- Java流程控制以及顺序、选择、循环结构
目录 用户交互Scanner Scanner对象 hasNext()与next() hasNextLine()与nextLine() Scanner进阶用法 求和与平均数 顺序结构 选择结构 if单选 ...
- SpringMVC笔记总结
文章所有代码见:gitee 1.回顾MVC 1.1.什么是MVC MVC是模型(Model).视图(View).控制器(Controller)的简写,是一种软件设计规范. 是将业务逻辑.数据.显示分离 ...
- #442-Find All Duplicates in an Array-数组中重复的数字
一.题目 给定一个整数数组 a,其中1 ≤ a[i] ≤ n (n为数组长度), 其中有些元素出现两次而其他元素出现一次. 找到所有出现两次的元素. 你可以不用到任何额外空间并在O(n)时间复杂度内解 ...
- 阿里云ECS封25端口导致wordpress无法发送邮件的解决
在有人评论你的文章,wordpress默认会尝试向博主发送邮件,而如果你用的是阿里云ECS,你会发现评论已经成功了,但是由于邮件发送失败会导致用户评论后页面就卡住了,原因就在于阿里云的ECS目前已经全 ...
- 基本sql语法
SQL 语句主要可以划分为以下 3 个类别. DDL(Data Definition Languages)语句:数据定义语言,这些语句定义了不同的数据段.数据库.表.列.索引等数据库对象的定义.常用 ...
- Hadoop 伪分布模式安装
( 温馨提示:图片中有id有姓名,不要盗用哦,可参考流程,有问题评论区留言哦 ) 一.任务目标 1.了解Hadoop的3种运行模式 2.熟练掌握Hadoop伪分布模式安装流程 3.培养独立完成Hado ...
- Alpha冲刺 —— 5.7
这个作业属于哪个课程 软件工程 这个作业要求在哪里 团队作业第五次--Alpha冲刺 这个作业的目标 Alpha冲刺 作业正文 正文 github链接 项目地址 其他参考文献 无 一.会议内容 1.展 ...