在上一篇文章,我们学习了间隙锁和next-key lock,但是不知道怎么加锁,有哪些规则。间隙锁的概念不太好理解,尤其是配合上行锁后,很容易在判断是否会出现锁等待的问题上犯错。

今天我们就来学习一下加锁规则吧。

在学习前要说明一点,以下的规则只限于版本范围:5.x系列<=5.7.24,8.0系列<=8.0.13。

加锁规则

这个加锁规则包含两个“原则”、两个“优化”和一个“bug”。

  1. 原则1:加锁的基本单位是next-key lock。希望你还记得,next-key lock是前开后闭区间。
  2. 原则2:查找过程中访问到的对象才会加锁。
  3. 优化1:索引上的等值查询,给唯一索引加锁的时候,next-key lock退化为行锁。
  4. 优化2:索引上的等值查询,向右遍历时且最后一个值不满足等值条件的时候,next-key lock退化为间隙锁。
  5. 一个bug:唯一索引上的范围查询会访问到不满足条件的第一个值为止。

下面以表t为例来介绍一下这些规则。表t的建表语句和初始化语句如下。

CREATE TABLE `t` (
`id` int(11) NOT NULL,
`c` int(11) DEFAULT NULL,
`d` int(11) DEFAULT NULL,
PRIMARY KEY (`id`),
KEY `c` (`c`)
) ENGINE=InnoDB; insert into t values(0,0,0),(5,5,5),
(10,10,10),(15,15,15),(20,20,20),(25,25,25);

案例1:等值查询间隙锁




图1 等值查询间隙锁

分析:

  • 步骤1:根据原则1,加锁(5, 10]
  • 步骤2:根据优化2,id=10不满足查询条件,因此退化为间隙锁(5, 10)

结论:

  • Session B阻塞是因为id=8在间隙锁(5, 10)内
  • Session C可以执行是因为没有锁住id=10这行

案例2:非唯一索引等值锁




图2 非唯一索引等值锁

分析:

  • 步骤1:根据原则1,加锁(0, 5]
  • 步骤2:由于c是普通索引,因此还需要继续遍历,直到找到c=10,不满足条件。根据原则2,访问到的对象要加锁,因此要加(5, 10]。
  • 步骤3:同时根据优化2,这是一个等值查询,向右遍历的不满足条件的第一个值10,(5, 10]要退化为间隙锁(5, 10)
  • 因此加锁是索引c的next-key lock(0,5]和间隙锁(5,10)

结论:

  • Session B可以执行是因为加锁的是索引c,而不是主键索引
  • Session C阻塞是因为c的插入值是7,在间隙锁(5, 10)范围内

案例3:主键索引范围锁




图3 主键索引范围锁

分析:

  • 步骤1:根据原则1,加锁(5, 10]
  • 步骤2:根据优化1,退化为id=10的行锁
  • 步骤3:继续遍历,找到不满足id<11的值id=15,加锁(10, 15]

因此加锁id=15的行锁和id的next-key lock(10, 15]

结论:

  • 插入id=13被阻塞:next-key lock (10, 15]
  • 更新id=15被阻塞:next-key lock (10, 15]

案例4:非唯一索引范围锁




图4 非唯一索引范围锁

分析:

  • 步骤1:根据原则1,加锁(5, 10]
  • 步骤2:继续遍历,找到不满足c<11的值c=15,根据原则2,加锁(10, 15]

因此加锁索引c (5, 10]和(10, 15]

结论:

  • 插入c=8,被(5, 10]阻塞
  • 更新c=15,被(10, 15]阻塞

案例5:唯一索引范围锁bug




图5 唯一索引范围锁bug

分析:

  • 步骤1:根据原则1,加锁(10, 15],再根据优化1,退化为id=15的行锁
  • 步骤2:向右遍历,加锁(10, 15]
  • 步骤3:根据BUG,要访问到不满足条件的第一个值,即id=20,加锁(15 ,20]。

因此加锁为(10, 15]和(15, 20]

结论:

  • 更新id=20阻塞,被(15, 20]锁住
  • 插入id=16阻塞,被(15, 20]锁住

案例6:非唯一索引上存在"等值"的例子

mysql> insert into t values(30,10,30);



图6 非唯一索引上存在"等值"的例子

分析:

  • 步骤1:根据原则1,(c=5,id=5)到(c=10,id=10)这个next-key lock
  • 步骤2:向右查找,直到碰到(c=15,id=15)这一行,循环才结束。根据优化2,这是一个等值查询,向右查找到了不满足条件的行,所以会退化成(c=10,id=10) 到 (c=15,id=15)的间隙锁

因此加锁(c=5,id=5)到(c=10,id=10)这个next-key lock和(c=10,id=10)到(c=15,id=15)这个间隙锁

结论:

  • 插入c=12阻塞,被(c=10,id=10)到(c=15,id=15)这个间隙锁锁住
  • 更新c=15成功,没有锁住c=15

案例7:limit 语句加锁

先插入一条记录。

mysql> insert into t values(30,10,30);



图7 limit 语句加锁

分析:

  • 步骤1:根据原则1,(5, 10],因为c=10有两条行,因此遍历到这里就结束
  • 步骤2:因为是delete,因此加两个行锁(id=10和id=30)

因此加锁c (5, 10)和两个行锁(id=10和id=30)

结论:

  • 插入c=12成功,因为c=12没有被锁住

说明:这个例子对我们实践的指导意义就是,在删除数据的时候尽量加limit。

案例8:一个死锁的例子

这个案例的目的是说明:next-key lock实际上是间隙锁和行锁加起来的结果。




图8 一个死锁的例子

分析:

  • 步骤1:根据原则1,加锁(5, 10]
  • 步骤2:继续遍历,直到c=15不满足条件,加锁(10, 15],根据优化2,退化为(10, 15)

结论:

  • Session B在等待锁,此时Session B已经加了间隙锁(5, 10),在等待加行锁c=10。
  • Session A插入c=8,也在等待锁,从而导致死锁

说明:next-key lock具体执行的时候,是要分成间隙锁和行锁两段来执行的。

案例9:非唯一索引排序范围锁




图9 非唯一索引排序范围锁

分析:

  • 步骤1:先执行c=20,加锁(15, 20]
  • 步骤2:根据优化2,加间隙锁(20, 25)
  • 步骤3:再执行c=15,加锁(10, 15]
  • 步骤4:继续向左遍历,找到记录id=10为止,加锁(5, 10]

在扫描过程中,c=20、c=15、c=10这三行都存在值,由于是select *,所以会在主键id上加三个行锁。

因此要加锁索引c (5, 25)和三个行锁(id=10,id=15,id=20)。

结论:

  • 插入c=6,被c(5, 25)锁住

案例10:不等号条件里的等值查询

begin;
select * from t where id>9 and id<12 order by id desc for update;

在执行过程中,通过树搜索的方式定位记录的时候,用的是“等值查询”的方法。

分析:

  • 步骤1:根据原则1,加锁 (10, 15]
  • 步骤2:根据优化2,退化为(10, 15)
  • 步骤3:向左遍历,找到id=10,加锁(5, 10],继续找到id=5为止,加锁(0, 5]

案例11:in范围锁

begin;
select id from t where c in(5,20,10) lock in share mode;

分析:

说明:锁是逐个逐个加的。

  • 步骤1:先c=5,加(0, 5]和(5, 10)
  • 步骤2:再c=10,加(5, 10]和(10, 15)
  • 步骤3:后c=20,加(15, 20]和(20, 25)

间隙锁是不互斥的,因为加锁范围是(0, 25),除c=15外。

死锁情况

select id from t where c in(5,20,10) order by c desc for update;

有一种情况,同时执行倒序语句,因为刚好同时执行,逐渐加锁(倒序加锁),会出现死锁情况。

参考资料

MySQL锁(四)行锁的加锁规则和案例的更多相关文章

  1. MySQL中的锁(表锁、行锁)

    锁是计算机协调多个进程或纯线程并发访问某一资源的机制.在数据库中,除传统的计算资源(CPU.RAM.I/O)的争用以外,数据也是一种供许多用户共享的资源.如何保证数据并发访问的一致性.有效性是所在有数 ...

  2. Mysql表锁、行锁、页锁

    参考 http://www.jb51.net/article/50047.htm <MySQL行级锁.表级锁.页级锁详细介绍> 页级:引擎 BDB.表级:引擎 MyISAM , 理解为锁住 ...

  3. [转]MySQL 表锁和行锁机制

    本文转自:http://www.cnblogs.com/itdragon/p/8194622.html MySQL 表锁和行锁机制 行锁变表锁,是福还是坑?如果你不清楚MySQL加锁的原理,你会被它整 ...

  4. 悲观锁,乐观锁,排他锁,行锁----MYSQL

    在说具体的锁结构时,先思考一个问题,那就是为什么要上锁?然后我要如何选择锁?锁具体如何实现? 在文章得末尾我给出了我的个人答案. 一.什么是悲观锁? 1.悲观锁就是在操作数据时,认为此操作会出现数据冲 ...

  5. MySql中的锁(表锁,行锁)

    锁是计算机协调多个进程或春线程并发访问某一资源的机制.在数据库中,除传统的计算资源(CPU,RAM,I/O)的争用之外,数据也是一种工许多用户共享的资源.如何保证数据并发访问的一致性,有效性是所有数据 ...

  6. MySQL表锁和行锁

    锁粒度 MySQL 不同的存储引擎支持不同的锁机制,所有的存储引擎都以自己的方式显现了锁机制,服务器层完全不了解存储引擎中的锁实现: InnoDB 存储引擎既支持行级锁(row-level locki ...

  7. MySQL的中的全局锁、表级锁、行锁

    MySQL的中的全局锁.表级锁.行锁 学习极客时间-林晓彬老师-MySQL实战45讲 学习整理 全局锁 对整个数据库实例加锁.通过使用Flush tables with read lock (FTWR ...

  8. mysql的innodb 引擎 表锁与行锁

    innodb 引擎 行锁与表锁 行锁与表锁是基于索引来说的(且索引要生效) 不带索引 (表锁)要全表扫描 1. 执行select @@autocommit; 查看结果 0是不自动提交事务,1是自动提交 ...

  9. innodb 表锁和行锁

    表锁  表锁相关结构: table->locks:数据字典table保存这个表上的所有表锁信息 trx->lock.table_locks:每个事务trx保存该事务所加的所有表锁信息 tr ...

随机推荐

  1. metasploit数据库使用学习

    metasploit为了方便,自动将当前工作区的内容放入数据库 首先就是工作区 -a 增加工作区,-d删除工作区 不同工作区的内容会分开储存到数据库 default工作区 test工作区 db_imp ...

  2. 设置cmd默认管理员模式启动

    打开cmd文件位置

  3. MathType中如何编辑求和公式

    在学习过程中,尤其是在写需要用到数学公式的论文的时,需要输入数学公式并进行格式编辑等,那么对于简单的公式可以使用Office自带的公式编辑器,对于复杂的公式建议使用专业的公式编辑器MathType,该 ...

  4. leetcode133. 克隆图

    给定无向连通图中一个节点的引用,返回该图的深拷贝(克隆).图中的每个节点都包含它的值 val(Int) 和其邻居的列表(list[Node]).示例: 输入:{"$id":&quo ...

  5. redlock分布式锁真的安全吗

    此文是对http://zhangtielei.com/posts/blog-redlock-reasoning-part2.html文章的个人归纳,如有问题请联系删除 什么是redlock redlo ...

  6. 听说高手都用记事本写C语言代码?那你知道怎么编译运行吗?

    坊间传闻高手都喜欢用记事本写代码,那么问题来了,我们以C语言为例,如何用记事本编译运行呢?其实最简单的方式就是安装GCC编译器,在记事本编写C语言程序,然后再在命令行用GCC编译运行,下面我简单介绍一 ...

  7. 【微信开发】缓存的asscess_token过期

    开发中有遇到这样一个问题,我们一般会将从微信拿到的寿命2个小时的access_token缓存起来,业务里这个缓存的时间是90分钟, 90分钟之后缓存过期,会重新请求新的access_token使旧的a ...

  8. mysql GTID主从复制故障后不停机恢复同步流程

    GTID实现主从复制数据同步 GTID是一个基于原始mysql服务器生成的一个已经被成功执行的全局事务ID,它由服务器ID以及事务ID组成,这个全局事务ID不仅仅在原始服务器上唯一,在所有主从关系的m ...

  9. Cys_Control(一) 项目搭建

    一.基础工程搭建 Cys_Controls Cys_Resource(注:一般类库默认不能引入资源文件,故直接创建Custom Control Library) Cys_Demo 删除默认文件夹及类, ...

  10. 记STM32F103C8T6+STLINK下载器在Keil中的设置

    调试代码为: /************************************** * 文件名 :main.c * 描述 :获取CPU的96bit ID 和 flash的大小,并通过USAR ...