Codeforce 1420 D. Rescue Nibel! 解析(思維、組合、離散化、差分)

今天我們來看看CF1420D

題目連結

題目

給你\(n\)個區間,求有幾種方法使得\(k\)個區間的交集非空。

前言

組合不會算,也想不到離散化

想法

首先需要找個依據來枚舉開始計算,而我們可以觀察到:對於任何一個\(k\)個區間的交集,這個交集的左界一定是某個區間的左界,也就是說我們可以枚舉交集所有可能的左界,把答案加總即可。

而假設要計算交集從\(i\)開始的方法數,我們必須知道究竟有多少個區間有包含這個左界,但是\(l_i,r_i\le10^9\)實在太大了,即使我們做差分也時間不夠,因此我們需要離散化整個座標軸。

差分即是:\(cnt[左界]++,cnt[右界+1]--\),如此一來只要把整個\(cnt\)數列做前綴和,其結果就是每個點被覆蓋的次數。

離散化:我們先把所有\(l_i,r_i\)丟進一個\(vector\)裡,並且只留下相異元素、排序,如此一來某原始座標\(x\)的離散化後的座標即是\(lower\_bound(vector_{start},vector_{end},x)\)。

我們還需要紀錄:對於每一個座標,有多少左界從這開始。

如此一來,我們只要遍歷所有座標點,答案加上:(覆蓋的區間中選\(k\)個的方法數\(-\)沒選到從當前座標開始的區間的方法數),就可以算出答案。

而還有一個難點即是計算組合數。我們可以先愈處理所有\(x!\)的數值和模反元素(計算模反元素可以用Fermat's Little Theorem:\(a^{p-1}\equiv1\mod p\),因為\(998244353\)是質數,所以\(a^{p-2}\equiv a^{-1}\mod p\)),接著就用一般的公式計算即可。

程式碼:

const int _n=3e5+10;
int t,n,k,cnt[_n<<1],num[_n<<1];
PII la[_n];
VI v;
int fac[_n],inv[_n];
void exgcd(int a,int b,int& d,int& x,int& y){
if(!b)x=1,y=0,d=a;
else exgcd(b,a%b,d,y,x),y=(1ll*y-1ll*x*(a/b)%mod+mod)%mod;
}
int C(int m,int n){
if(m<n)return 0;
if(m<mod and n<mod)return 1ll*fac[m]*inv[n]%mod*inv[m-n]%mod;
return 1ll*C(m/mod,n/mod)*C(m%mod,n%mod)%mod;
}
void genInv(){
fac[0]=1;rep(i,1,n+1)fac[i]=1ll*fac[i-1]*i%mod;
//int tmp1,tmp2;rep(i,0,n+1)exgcd(fac[i],mod,tmp1,inv[i],tmp2);
inv[n]=powmod(fac[n],mod-2);per(i,0,n)inv[i]=1ll*inv[i+1]*(i+1)%mod;
}
main(void) {ios_base::sync_with_stdio(0);cin.tie(0);cout.tie(0);
cin>>n>>k;rep(i,0,n){cin>>la[i].fi>>la[i].se;v.pb(la[i].fi),v.pb(la[i].se);}
sort(all(v));int nn=unique(all(v))-v.begin(); genInv(); ll ans=0;
rep(i,0,n){
la[i].fi=lower_bound(v.begin(),v.begin()+nn,la[i].fi)-v.begin();
la[i].se=lower_bound(v.begin(),v.begin()+nn,la[i].se)-v.begin();
}rep(i,0,n)cnt[la[i].fi]++,cnt[la[i].se+1]--,num[la[i].fi]++;
rep(i,1,nn)cnt[i]=cnt[i-1]+cnt[i];
rep(i,0,nn)ans=(ans+C(cnt[i],k)-C(cnt[i]-num[i],k)+mod)%mod;
cout<<ans<<'\n';
return 0;
}

標頭、模板請點Submission看(\(exgcd\)用不到,且\(C\)函數我寫的是Lucas定理法)

Submission

D. Rescue Nibel! 解析(思維、組合、離散化、差分)的更多相关文章

  1. D. New Year Santa Network 解析(思維、DFS、組合、樹狀DP)

    Codeforce 500 D. New Year Santa Network 解析(思維.DFS.組合.樹狀DP) 今天我們來看看CF500D 題目連結 題目 給你一棵有邊權的樹,求現在隨機取\(3 ...

  2. B. Two Fairs 解析(思維、DFS、組合)

    Codeforce 1276 B. Two Fairs 解析(思維.DFS.組合) 今天我們來看看CF1276B 題目連結 題目 給一個連通圖,並給兩個點(\(a,b\)),求有多少點對使得:任一路徑 ...

  3. D. Maximum Distributed Tree 解析(思維、DFS、組合、貪心、DP)

    Codeforce 1401 D. Maximum Distributed Tree 解析(思維.DFS.組合.貪心.DP) 今天我們來看看CF1401D 題目連結 題目 直接看原題比較清楚,略. 前 ...

  4. A. Arena of Greed 解析(思維)

    Codeforce 1425 A. Arena of Greed 解析(思維) 今天我們來看看CF1425A 題目連結 題目 略,請直接看原題. 前言 明明是難度1400的題目,但總感覺不是很好寫阿, ...

  5. E. Almost Regular Bracket Sequence 解析(思維)

    Codeforce 1095 E. Almost Regular Bracket Sequence 解析(思維) 今天我們來看看CF1095E 題目連結 題目 給你一個括號序列,求有幾個字元改括號方向 ...

  6. C2. Power Transmission (Hard Edition) 解析(思維、幾何)

    Codeforce 1163 C2. Power Transmission (Hard Edition) 解析(思維.幾何) 今天我們來看看CF1163C2 題目連結 題目 給一堆點,每兩個點會造成一 ...

  7. F. Moving Points 解析(思維、離散化、BIT、前綴和)

    Codeforce 1311 F. Moving Points 解析(思維.離散化.BIT.前綴和) 今天我們來看看CF1311F 題目連結 題目 略,請直接看原題. 前言 最近寫1900的題目更容易 ...

  8. B. Two Arrays 解析(思維)

    Codeforce 1417 B. Two Arrays 解析(思維) 今天我們來看看CF1417B 題目連結 題目 略,請直接看原題. 前言 a @copyright petjelinux 版權所有 ...

  9. C. k-Amazing Numbers 解析(思維)

    Codeforce 1417 C. k-Amazing Numbers 解析(思維) 今天我們來看看CF1417C 題目連結 題目 略,請直接看原題. 前言 我實作好慢... @copyright p ...

随机推荐

  1. ZooKeeper学习(一)了解ZooKeeper

    一.什么是ZooKeeper ZooKeeper主要服务于分布式系统,可以用ZooKeeper来做:统一配置管理.统一命名服务.分布式锁.集群管理. 使用分布式系统就无法避免对节点管理的问题(需要实时 ...

  2. MySql-8.0.x免安装版下载与配置,Navicat打开数据库链接报错1251的解决办法

    若你以前卸载过mysql,小白极大可能没有卸载和删除干净残留,没有卸载干净就肯定重装不成功,可参考https://www.cnblogs.com/Luoters/p/11869032.html 参考与 ...

  3. 数据库图形表Navicat Premium

    1.什么是数据库? 存储数据,为了方便查询和使用 web时代使用最广泛的关系型数据库 2.历史: 瑞典公司开发,卖给SUN,SUN又卖给ORACLE 开源,免费,支持多平台 3.数据库图形表Navic ...

  4. 记一次数据库主从导致严重的bug解决过程

    1.事情起始: 我们每个月要给商家进行出账,所以有定时任务去跑商家的订单和售后进行出账,这个功能已经上线很久了,代码执行多次都没问题,突然有一天,产品找我说出现bug了: 这时,去生产库查询重复的订单 ...

  5. PageObject课程培训记录

    前言 昨晚的培训课程讲了PO设计模式,对于PO模式我们需要去了解关于为什么要使用PO,而不使用PO是什么情况?什么是PO模式?PO怎么去使用? 第一,为什么要使用PO,而不使用PO是什么情况? 我们先 ...

  6. 朴素贝叶斯分类器Naive Bayes

    优点Naive Bayes classifiers tend to perform especially well in one of the following situations: When t ...

  7. Java date format 时间格式化

      import java.util.Date; import java.text.DateFormat; /** * 格式化时间类 * DateFormat.FULL = 0 * DateForma ...

  8. Python实现的数据结构与算法之链表详解

    一.概述 链表(linked list)是一组数据项的集合,其中每个数据项都是一个节点的一部分,每个节点还包含指向下一个节点的链接.根据结构的不同,链表可以分为单向链表.单向循环链表.双向链表.双向循 ...

  9. C++实现串口通信问题(与Arduino)

    参考1(已验证稍加修改可与Arduino通信):https://blog.csdn.net/qq_36106219/article/details/81701368 参考2(比较全,main函数需要自 ...

  10. Splay浅谈

    Splay是众多平衡树之一,它的功能十分强大,但常数极大.在LCT和许多数据结构中都能用到. Splay的核心操作,就是rotate.为了使树不是一条链,而是平衡的,我们需要旋转来维护形态.理论很简单 ...