机器学习可解释性分析

可解释性通常是指使用人类可以理解的方式,基于当前的业务,针对模型的结果进行总结分析

一般来说,计算机通常无法解释它自身的预测结果,此时就需要一定的人工参与来完成可解释性工作;

目录:

  • 是什么:什么叫可解释性;
  • 为什么:为什么要对模型结果进行解释;
  • 怎么做:如何有效的进行可解释性工作;

是什么

机器学习

介绍可解释性之前,我们先来简单看看什么是机器学习,此处我们主要讨论有监督机器学习,对于无监督、强化学习等不做主要分析;

机器学习是计算机基于数据做出的和改进预测行为的一套方法,举例说明:

  • 房屋价格预测:基于历史房屋的价格以及其他属性信息,训练回归模型,并针对的房屋进行价格预测
  • 信用卡诈骗检测:基于信用卡历史消费记录等信息,训练分类模型,并针对的刷卡行为进行异常检测

有监督学习的目标是学习一个预测模型,将数据特征(建设年份、大小、楼层、地段等)映射到输出(房价),模型算法通过估计参数(权重,比如线性回归)或者学习结构(树型,比如决策树)来学习,过程由一个最小化分数或者损失函数指导,例如在房屋价格预测,则是最小化预测与真实的价格差;

机器学习算法运行在计算机上,从很多方面看是表现是优于人类的,比如速度、稳定性、可复制性等等,即便性能上略逊于人类,但是瑕不掩瑜,但是模型也有它的劣势,那就是计算机通常无法有效的解释模型的预测行为,这里的解释指的是说给人类听,一个深度神经网络可能由几百层网络百万个参数组成,一个随机森林可能由几百棵决策树组成,不管是在比赛中,还是实际工作中,表现最好的模型往往是复杂的集成模型,这就使得对他们的解释愈发困难,超多的参数、复杂的结构、特征的组合等等都阻挡了我们对结果的直观理解,这在一定程度上伤害着我们对结果的信心;

因此,不管是从对业务扩展可信度结果分享中的哪个角度考虑,可解释性都是机器学习中重要且有必要的一环;

可解释性

可解释性的一个特殊点在于它的衡量没有一个量化的数学方法,主观的定义是可解释性是人们能够理解模型决策原因的程度,这种理解是基于实际数据和业务下的理解,假设一个线性模型做房屋预测,模型中房屋大小房价影响最大,那么这个结果是很容易理解的,也符合我们的主观认知,如果换成深度神经网络来做预测,或者先对数据做了PCA等处理后再做预测,结果往往是人类没法直接理解的,那么从解释性上看,明显第一个模型的解释性更好;

为什么

进行可解释性的原因:

  • 知其然更要知其所以然:人类的好奇心驱使下,问为什么是很正常的一种思维,如果不能解释预测结果,那么就无法让人们完全信任这个结果(现代医学中西医的接受度要高于中医,除了科学带来的普适性之外,西医的可解释性明显要优于中医,给人感觉更放心);
  • 从实际业务上考虑,假设我们的模型预测不给某人发放信用卡,那也应该提供一个不能发放的原因给到办理业务的人员,另外针对某些特殊场景,比如癌症检测自动驾驶等涉及人身安全的问题上,可解释性提供了后续问题复盘的基础;

可解释性让我们更容易检查以下性质:公平性隐私可靠性因果关系信任

怎么做

可解释性方法分类

针对不同类型的模型可以使用不能的可解释性方法:

  • 本质的:本质上可解释模型(比如短决策树、简单线性模型等),这一类模型由于自身的简单性,可以针对其结果、回归权重等直接进行解释;
  • 模型无关的:对于更普遍的情况,即复杂模型的解释,需要使用模型无关方法,比如个体条件期望、特征交互、累计局部效应图等;

实际工作中上述两类方法都会使用,我一般的流程是先易后难,先从最简单的方法开始进行可解释性工作;

可解释性评估

目前针对机器学习的可解释性没有统一的达成共识的标准,但是也有了一些初步的评估方法:

  • 应用级评估:由最终产品的使用用户来评估其解释性的好坏;
  • 人员级评估:类似应用级评估,区别是由测试人员代替最终用户,优点是更廉价,缺点是效果与最终用户会有差异,尤其是在某些专业领域,比如医学等方面的机器学习产品;
  • 功能级评估:代理型解释,例如我们用SVM训练模型并预测房屋价格,使用局部代理方法(比如决策树)来解释SVM的预测结果,也就是复杂模型做业务,简单模型解释其结果;

PS:在我们的乘客聚类项目中,一部分解释性工作就类似代理型解释,KMeans做聚类,随机森林逻辑回归解释结果;

解释方法的性质

性质是用于判断解释方法自身好坏的方法,目前一个最大的难点在于大多数性质都没法量化:

  • 表达能力:表达能力越好的解释方法越能解释复杂模型的预测结果,目前来看最好的表达能力是对深度神经网络的解释,这一点也是很多大佬们的研究方向;
  • 半透明度:依赖于被解释算法模型的程度,例如对于本质上可解释的模型的解释方法就是高度透明的,而那些模型无关的算法则半透明度基本为0,高透明度的优点是可以基于模型更多信息来解释,而低透明度优点在于移植性好;
  • 可移植性:与解释方法与被解释模型的依赖程度成反比,因此模型无关的解释方法的可移植性是最好的;
  • 算法复杂度:解释方法自身算法的计算复杂度;

单个解释的性质:准确性保真度一致性稳定性可理解性确定性重要程度新颖性代表性

人性化的解释

对外输出结果时,什么叫做好的解释,人文科学研究表示:人类更喜欢较短的解释,将正反两面进行对比,异常情况单独进行说明;

  1. 解释具有对比性:人们关心的通常不是某个房屋为什么被预测为100w,而是两个情况类似的房屋,为什么一个比另一个贵10w,因此解释的重点在于说明两个例子的差异,形成对比,这种强烈的对比感是人们容易接受的;
  2. 选择性的解释:针对真实情况,只选择其中有代表性的几个原因组成解释,使得解释更简短;
  3. 解释是社会性的:针对不同的被解释人群进行区分对待,对于专业人员,可以更多从模型算法出发,对于其他岗位同事可以更多从业务等领域出发;
  4. 异常要重点解释:异常虽然在指标上没有突出的体现(过于关注指标的表现会忽略藏在其中的异常例子),但是异常很吸引人们的注意力,因此对于异常例子的重点解释是很重要的;
  5. 解释是真实的:对于某些例子的解释应该同样适用于其他例子,至少是类似的例子上;
  6. 好的解释与被解释着的先验知识是一致的:人类由于认知偏差会更相信自己知道的,比如我们都认为房子越大价钱越贵,那么如果模型在某一类房屋上给出了面积越大,价钱便宜这样一个解释,这是很难被人们接收的,但是事实上模型为了更好的性能,可能进行了复杂的特征交互、组合得出的结果,结果是对的,但是它的解释却很难被接受;
  7. 好的解释是普遍性很可能的:比如房子越大价钱越贵,这就是一个普遍性很高的解释,也确实很可能;

后续

后续会继续出可解释性相关文档,预计包括自身可解释模型(线性回归、逻辑回归、决策树等)、模型无关的解释方法、工作中的真实项目中的解释性工作;

最后

本文基于《可解释性的机器学习》,作者 Christoph Molnar,译者 朱明超;

机器学习可解释性系列 - 是什么&为什么&怎么做的更多相关文章

  1. 【ABAP系列】SAP ABAP 模拟做成像windows一样的计算器

    公众号:SAP Technical 本文作者:matinal 原文出处:http://www.cnblogs.com/SAPmatinal/ 原文链接:[MM系列]SAP ABAP 模拟做成像wind ...

  2. 机器学习环境配置系列四之theano

    决定撰写机器学习环境配置的主要原因就是因为theano的配置问题,为了能够用上gpu和cudnn加速,我是费劲了力气,因为theano1.0.0在配置方面出现了重大改变,而网上绝大多数都很老,无法解决 ...

  3. 100天搞定机器学习|day54 聚类系列:层次聚类原理及案例

    几张GIF理解K-均值聚类原理 k均值聚类数学推导与python实现 前文说了k均值聚类,他是基于中心的聚类方法,通过迭代将样本分到k个类中,使每个样本与其所属类的中心或均值最近. 今天我们看一下无监 ...

  4. 机器学习环境配置系列一之CUDA

    本文配置的环境为redhat6.9+cuda10.0+cudnn7.3.1+anaonda6.7+theano1.0.0+keras2.2.0+jupyter远程,其中cuda的版本为10.0. 第一 ...

  5. 机器学习环境配置系列二之cuDNN

    1.下载cuDNN 前往: NVIDIA cuDNN home page. 进入下载 勾选Nvidia的协议复选框(流氓的选择,不勾选不能下载) 选择与安装的cuda版本一致的cudnn进行下载. 2 ...

  6. 机器学习环境配置系列六之jupyter notebook远程访问

    jupyter运行后只能在本机运行,如果部署在服务器上,大家都希望可以远程录入地址进行访问,这篇文章就是解决这个远程访问的问题.几个基本的命令就可以搞定,然后就可以愉快的玩耍了. 1.安装jupyte ...

  7. 机器学习环境配置系列五之keras2

    keras一个大坑就是配置文件的问题,网上会给很多的误导,让我走了很多弯路. 1.安装keras2 conda install keras 2.环境配置 echo ‘{ "epsilon&q ...

  8. 机器学习环境配置系列三之Anaconda

    1.下载Anaconda文件 进入anaconda的官网 选择对应的系统 选择希望下载的版本(本人下载的是Anaconda 5.3 For Linux Installer Python 3.7 ver ...

  9. 机器学习数据处理时label错位对未来数据做预测

    这篇文章继上篇机器学习经典模型简单使用及归一化(标准化)影响,通过将测试集label(行)错位,将部分数据作为对未来的预测,观察其效果. 实验方式 以不同方式划分数据集和测试集 使用不同的归一化(标准 ...

随机推荐

  1. 不同SEO对长尾关键词的不同做法

    http://www.wocaoseo.com/thread-122-1-1.html      长尾关键词指的是除目标关键词能带来搜索流量的关键词称之长尾关键词,它为一般由几个词语或短语组成,而且随 ...

  2. iOS 报错: linker command failed with exit code 1 (use -v to see invocation) 原因

    在iOS开发中,很多人会遇到这样的报错 linker command failed with exit code 1 (use -v to see invocation) 可能的原因如下: 1.引用出 ...

  3. oracle无法通过ip地址连接

    问题描述:使用plsql可以连接本地oracle实例,但telnet 192.168.130.71 (内网ip)不通. 其实在11g安装完成后,默认网络配置 listener.ora中 host = ...

  4. Mybatis实例增删改查(二)

    创建实体类: package com.test.mybatis.bean; public class Employee { private Integer id; private String las ...

  5. 2048游戏 - C语言不引入图形库简单实现

    声明:本程序绝大部分属于原创,交互部分参考了博客园 Judge Young的原创文章 游戏2048源代码 - C语言控制台界面版, 作者Judge Young的算法思想非常值得参考,感谢作者的分享 附 ...

  6. python实践项目1

    python #南昌理工学院人工智能学院实验室 WORKSHOP 实践项目 import time print('welcome to our WORKSHOP') print('.......... ...

  7. Agumaster 增加日交易数据列表

  8. ckeditor4.0以上使用行间距插件lineheight报错修改

    ①从百度上下载一个 ckeditor 行距包,解压放到ckeditor/plugins目录下. ②在config.js 中添加 config.extraPlugins += (config.extra ...

  9. 《ASP.NET Core项目开发实战入门》带你走进ASP.NET Core开发

    <ASP.NET Core项目开发实战入门>从基础到实际项目开发部署带你走进ASP.NET Core开发. ASP.NET Core项目开发实战入门是基于ASP.NET Core 3.1 ...

  10. synchronized底层是怎么实现的?

    前言 面试的时候有被问到,synchronized底层是怎么实现的,回答的比较浅,面试官也不是太满意,所以觉得要好好总结一下,啃啃这个硬骨头. synchronized使用场景 我们在使用synchr ...