luogu 3158 [CQOI2011]放棋子
时隔多日 我又来挑战这道dp。
几个月前给写自闭了。几个月后再来。
首先一个我们能列出来的状态 是以行为转移的 f[i]表示前i行...但是会发现此时列我们控制不了 且棋子的颜色,个数我们也要放到状态里。
这个dp是一个完成不了 或者说复杂度过高的dp。
必须得换一个状态 可以想到 由于每种颜色棋子独立 所以我们没有必要若干个颜色的棋子进行混合求方案。
可以一种一种颜色的棋子放。
所以有状态 f[i][j][k]表示前i种颜色的棋子占领了j行K列的方案数。
这样行和列的状态有了 我们只需要安排一下当前颜色怎么放。
当前颜色有a[i]个棋子。枚举一下 这么多棋子能占 l行 r列。
发现我们很难去形成用a[i]个棋子完美占领l行r列。但是若a[i]<l||a[i]<r方案数显然为0.
设S=空余的位置数 C(S,a[i])我们先强行安排位置。再减掉不合法的方案。
不合法方案=没有占领够l行+没有占领够r行-前两者的交集。
这里的容斥里面是一个类似于代表元容斥的东西。显然没够l行 说明最多<=l-1都是不合法的 对列同样如此。
最后两者不合法的交集要加回来即可。
不过这样容斥是错误的 原因是 我们的不合法方案中可能有状态是重复的如l-1行不合法我们外面还要乘一个C(l,l-1)*l-1行的不合法。
仔细观察 l-1行的不合法并不代表l-1行全部被占 所以外面再乘以l说明一些方案被重复计算了但是不这样做也不对 不合法的方案需要枚举出哪一行没有被占。
所以我们考虑一个新的容斥 这次我们不合法方案定义为 精确的占了wl,wr行 确保他们都被占了 这样就不会出现上述情况了。
但是wl,wr需要枚举 我们需要把所有不合法的都给减掉。这样是\(c\cdot n^3\cdot m^3\)发现这个东西显然可以预处理一下 所以复杂度降低一个nm.
这样总复杂度为\(sum \cdot n^2\cdot m^2\) 可以通过。我终于战胜了这道题目。
有的晕了。。
需要注意的是 开longlong (我以为一个地方不会爆然后爆了 千万不要以为!
对于预处理 我们只需要处理a[i]即可 我没想好 把1~mx都给处理了。
const int MAXN=31,maxn=2010;
int n,m,c,maxx,mx;
int a[MAXN],vis[maxn];
ll g[maxn][MAXN][MAXN];//表示i个棋子占了j行k列的方案数。
ll f[MAXN][MAXN][MAXN];//f[i][j][k]表示前i种颜色占了i行j列的方案数.
ll fac[maxn],inv[maxn],ans;
inline int ksm(ll b,int p)
{
ll cnt=1;
while(p)
{
if(p&1)cnt=cnt*b%mod;
b=b*b%mod;
p=p>>1;
}
return cnt;
}
inline void prepare()
{
fac[0]=1;
rep(1,maxx,i)fac[i]=fac[i-1]*i%mod;
inv[maxx]=ksm(fac[maxx],mod-2);
for(int i=maxx-1;i>=0;--i)inv[i]=inv[i+1]*(i+1)%mod;
}
inline ll C(int a,int b)
{
if(a<b)return 0;
return fac[a]*inv[b]%mod*inv[a-b]%mod;
}
int main()
{
//freopen("1.in","r",stdin);
get(n);get(m);get(c);
rep(1,c,i)get(a[i]),mx=max(mx,a[i]),vis[a[i]]=1;
maxx=n*m;prepare();
f[0][0][0]=1;g[0][0][0]=1;
rep(1,mx,i)
{
if(!vis[i])continue;
rep(1,n,j)rep(1,m,k)
{
if(i<j||i<k)continue;
rep(1,j,w1)rep(1,k,w2)
{
if(w1==j&&k==w2)g[i][j][k]=(g[i][j][k]+C(j*k,i))%mod;
else g[i][j][k]=(g[i][j][k]-C(j,w1)*C(k,w2)%mod*g[i][w1][w2]%mod)%mod;
}
}
}
rep(1,c,i)//前i种颜色
{
rep(0,n,j)rep(0,m,k)
{
if(!f[i-1][j][k])continue;
rep(1,n-j,l)rep(1,m-k,r)
{
if(a[i]<l||a[i]<r)continue;
f[i][j+l][k+r]=(f[i][j+l][k+r]+C(n-j,l)*C(m-k,r)%mod*f[i-1][j][k]%mod*g[a[i]][l][r]%mod)%mod;
}
}
}
rep(1,n,j)rep(1,m,k)ans=(ans+f[c][j][k])%mod;
printf("%lld\n",(ans+mod)%mod);
return 0;
}
luogu 3158 [CQOI2011]放棋子的更多相关文章
- BZOJ 3294: [Cqoi2011]放棋子
3294: [Cqoi2011]放棋子 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 628 Solved: 238[Submit][Status] ...
- bzoj3294[Cqoi2011]放棋子 dp+组合+容斥
3294: [Cqoi2011]放棋子 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 755 Solved: 294[Submit][Status] ...
- [CQOI2011]放棋子 (DP,数论)
[CQOI2011]放棋子 \(solution:\) 看到这道题我们首先就应该想到有可能是DP和数论,因为题目已经很有特性了(首先题面是放棋子)(然后这一题方案数很多要取模)(而且这一题的数据范围很 ...
- bzoj千题计划261:bzoj3294: [Cqoi2011]放棋子
http://www.lydsy.com/JudgeOnline/problem.php?id=3294 如果一个颜色的棋子放在了第i行第j列,那这种颜色就会占据第i行第j列,其他颜色不能往这儿放 设 ...
- [洛谷P3158] [CQOI2011]放棋子
洛谷题目链接:[CQOI2011]放棋子 题目描述 在一个m行n列的棋盘里放一些彩色的棋子,使得每个格子最多放一个棋子,且不同 颜色的棋子不能在同一行或者同一列.有多少祌方法?例如,n=m=3,有两个 ...
- 【BZOJ 3294】 3294: [Cqoi2011]放棋子 (DP+组合数学+容斥原理)
3294: [Cqoi2011]放棋子 Description Input 输入第一行为两个整数n, m, c,即行数.列数和棋子的颜色数.第二行包含c个正整数,即每个颜色的棋子数.所有颜色的棋子总数 ...
- P3158 [CQOI2011]放棋子(dp+组合数)
P3158 [CQOI2011]放棋子 放棋子的顺序和方案数无关,所以可以从按颜色递推 设$f[u][p][k]$为放到第$u$种颜色,所剩空间$p*k$的方案数 $g[u][i][j]$表示第$u$ ...
- BZOJ3294: [Cqoi2011]放棋子
Description Input 输入第一行为两个整数n, m, c,即行数.列数和棋子的颜色数.第二行包含c个正整数,即每个颜色的棋子数.所有颜色的棋子总数保证不超过nm. Output 输出 ...
- [CQOI2011]放棋子--DP
题目描述: 输入格式 输入第一行为两个整数n, m, c,即行数.列数和棋子的颜色数.第二行包含c个正整数,即每个颜色的棋子数.所有颜色的棋子总数保证不超过nm.N,M<=30 C<=10 ...
随机推荐
- 「疫期集训day11」沙漠
可恶的英格兰人,为了石油而攻打我们----岂能让他们得逞?----鄂斯曼帝国的士兵 今天整理日,不错不错 写了一天的DP,截一些较好的题: 收获: \(1.\) 对拍更熟练了,主要是线段和合并饭团两题 ...
- Python 最强 IDE 详细使用指南!
PyCharm 是一种 Python IDE,可以帮助程序员节约时间,提高生产效率.那么具体如何使用呢?本文从 PyCharm 安装到插件.外部工具.专业版功能等进行了一一介绍,希望能够帮助到大家.作 ...
- 邓布利多拍了拍你,并递来一份CSS魔法
校长:阿不思·邓布bai利多 亲爱的少年:我们愉快地通知您,您已获准在CSS魔法学校就读.特此带给你一份CSS魔法秘籍,代码简单,支持个性化定制.学期定于今日开始,我们将在此静候您的猫头鹰带来您的回信 ...
- REACT——虚拟DOM
深入了解虚拟DOM 实际顺序 jsx->createElemnt ->虚拟DOM(JS 对象)->真实DOM 虚拟DOM中的Diff算法 :当react查找差异的时候,就会采用dif ...
- Java应用服务器之tomcat部署
一.相关术语简介 首先我们来了解下tomcat是什么,tomcat是apache软件基金会中的一个项目,由apache.Sun 和其他一些公司及个人共同开发而成.主要作用是提供servlet和jsp类 ...
- CentOS 7 内核RPM方式升级
RPM包下载地址: https://elrepo.org/linux/kernel/el7/x86_64/RPMS/ 选择lt版本(长期支持) #下载内核RPM包,这里是kernel-lt-4.4.- ...
- 用maven打包java项目的pom文件配置
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/20 ...
- Python Ethical Hacking - KEYLOGGER(1)
A program that records keys pressed on the keyboard. Common features: Store logs locally(local keylo ...
- Python Ethical Hacking - VULNERABILITY SCANNER(4)
Extracting & Submitting Forms Automatically Target website:http://10.0.0.45/dvwa/vulnerabilities ...
- for语句例题:编写程序FooBizBaz.java,从1循环到150并在每行打印一个值
/** * 编写程序FooBizBaz.java,从1循环到150并在每行打印一个值, * 另外在每个3的倍数行上打印出"foo",在每个5的倍数行上打印"biz&quo ...