LINK:游园会

容易想到 设\(f[i][j][k][l]\)前i个字符 j表示状压的w个字符状态为j 长度<=k 匹配到了NOI的第l个位置的方案数.

不过只能得到30分。

考虑优化 其实优化就只能优化如何快速得到LCS 这个问题 \(3^15\cdot 15\)的状态量无法很难接受。

考虑降低这个状态量。考虑如果在一个自动机上 那么我们这个状态就可以表示匹配到了自动机上某个节点。

不过最长公共子序列自动机 并不存在。

考虑人为构造这个东西 考虑求两个串的最长公共子序列的dp.

\(dp_{i,j}\)表示A串前i个字符B串前j个字符的最大长度.

容易得到转移:\(dp_{i,j}=max(dp_{i-1,j},dp{i,j-1},dp_{i-1,j-1}+[A_i==B_j])\)

那么其实只要知道\(dp_i-1\)这个数组和当前这个字符\(A_i\)就可以推向下一个字符。

进一步的 以\(dp_i\)为最长公共子序列的节点 那么每次转移只需要枚举下一个字符是谁 就可以很容易的重新得到新的LCS的状态和长度.

这样就可以把上述的那么大的状态量压缩成了这样的dp数组 不过直接存一个数组是需要hash的。

可以观察得到 \(dp_i\)是不降的 可以将其差分就得到了一个二进制串 最终状态量为\(2^w\) 可以通过此题.

const int MAXN=1010,maxn=35010;
int n,k,u,maxx;
int f[2][maxn][3];
char a[MAXN];
int g[2][MAXN],sum[maxn],ans[MAXN];
inline void add(int &x,int y){x=x+y>=mod?x+y-mod:x+y;}
inline void jy(int s)
{
rep(1,k,i)g[0][i]=s>>i-1&1;
rep(1,k,i)g[0][i]+=g[0][i-1];
}
inline int ys()
{
int S=0;
rep(1,k,i)if(g[1][i]-g[1][i-1])S|=1<<(i-1);
return S;
}
inline void update(int s,int l,char c,int w)
{
jy(s);
rep(1,k,i)
{
g[1][i]=max(g[0][i],g[1][i-1]);
if(c==a[i])g[1][i]=max(g[1][i],g[0][i-1]+1);
}
int j=ys();add(f[u][j][l],w);
}
int main()
{
freopen("1.in","r",stdin);
gt(n);gt(k);gc(a);
maxx=1<<k;--maxx;
f[u][0][0]=1;
rep(1,n,i)
{
u=u^1;
rep(0,maxx,j)rep(0,2,k)f[u][j][k]=0;
rep(0,maxx,j)
{
if(f[u^1][j][0])
{
update(j,1,'N',f[u^1][j][0]);
update(j,0,'O',f[u^1][j][0]);
update(j,0,'I',f[u^1][j][0]);
}
if(f[u^1][j][1])
{
update(j,1,'N',f[u^1][j][1]);
update(j,2,'O',f[u^1][j][1]);
update(j,0,'I',f[u^1][j][1]);
}
if(f[u^1][j][2])
{
update(j,1,'N',f[u^1][j][2]);
update(j,0,'O',f[u^1][j][2]);
}
}
}
rep(0,maxx,i)
{
sum[i]=sum[i>>1]+(i&1);
rep(0,2,j)add(ans[sum[i]],f[u][i][j]);
}
rep(0,k,i)put(ans[i]);
return 0;
}

luogu P4590 [TJOI2018]游园会 dp套dp的更多相关文章

  1. 洛谷P4590 [TJOI2018]游园会(状压dp LCS)

    题意 题目链接 Sol 这个题可能是TJOI2018唯一的非模板题了吧.. 考虑LCS的转移方程, \[f[i][j] = max(f[i - 1][j], f[i][j - 1], f[i - 1] ...

  2. P4590-[TJOI2018]游园会【dp套dp】

    正题 题目链接:https://www.luogu.com.cn/problem/P4590 题目大意 给出一个长度为\(m\)的字符串\(s\). 对于每个\(k\in[0,m]\)求有多少个长度为 ...

  3. [模板] dp套dp && bzoj5336: [TJOI2018]party

    Description Problem 5336. -- [TJOI2018]party Solution 神奇的dp套dp... 考虑lcs的转移方程: \[ lcs[i][j]=\begin{ca ...

  4. luogu 4158 粉刷匠 dp套dp

    dp套dp 每个木板是个递推的dp,外部是个分组背包 #include<bits/stdc++.h> #define rep(i,x,y) for(register int i=x;i&l ...

  5. DP套DP

    DP套DP,就是将内层DP的结果作为外层DP的状态进行DP的方法. [BZOJ3864]Hero meet devil 对做LCS的DP数组差分后状压,预处理出转移数组,然后直接转移即可. tr[S] ...

  6. bzoj 3864: Hero meet devil [dp套dp]

    3864: Hero meet devil 题意: 给你一个只由AGCT组成的字符串S (|S| ≤ 15),对于每个0 ≤ .. ≤ |S|,问 有多少个只由AGCT组成的长度为m(1 ≤ m ≤ ...

  7. Codeforces 372B Counting Rectangles is Fun:dp套dp

    题目链接:http://codeforces.com/problemset/problem/372/B 题意: 给你一个n*m的01矩阵(1 <= n,m <= 40). 然后有t组询问( ...

  8. 【BZOJ3864】Hero meet devil DP套DP

    [BZOJ3864]Hero meet devil Description There is an old country and the king fell in love with a devil ...

  9. codeforces 979E(dp套dp)

    题意: 有n个点,编号为1~n.有的点颜色是黑色,有的点颜色是白色,有的点的颜色待涂.你还可以连一些边,但这些边一定是从小编号连到大编号的点. 对于一个确定的图,我们去统计有多少条路径满足“该路径经过 ...

随机推荐

  1. Sass简单、快速上手_Sass快速入门学习笔记总结

    Sass是世界上最成熟.稳定和强大的专业级css扩展语言 ,除了Sass是css的一种预处理器语言,类似的语言还有Less,Stylus等. 这篇文章关于Sass快速入门学习笔记. 资源网站大全 ht ...

  2. python 实现汉诺塔

    汉诺塔:汉诺塔(又称河内塔)问题是源于印度一个古老传说的益智玩具.大梵天创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按照大小顺序摞着64片黄金圆盘. 大梵天命令婆罗门把圆盘从下面开始按大小顺 ...

  3. HNOI 2014 米特运输(图论)

    HNOI 2014 米特运输 题目大意 给一棵树,每个点有自己的权值,要求更改一些点的权值,使得整棵树满足两个条件: 同一个父亲的所有子节点权值相同 父节点的取值为所有子节点的和 答案输出最少要更改的 ...

  4. pycharm设置字体和背景色

    Pycharm字体和背景色设置 1 菜单字体大小设置 设置后: 2.编辑字体大小设置 3.背景色设置

  5. 管理用户和组 、 tar备份与恢复 、 cron计划任务-云计算学习(4)

    配置用户和组账号 问题 本例要求创建下列用户.组以及组的成员关系: 新建用户 alex,其用户ID为3456,密码是flectrag 创建一个名为 adminuser 的组 创建一个名为 natash ...

  6. DRS是啥你都不知道?不是吧,不是吧

    前言 最近写了很多数据库相关的文章,大家基本上对数据库也有了很多的了解,数据库本身有所了解了,我们是不是应该回归业务本身呢? 大家去了解过自己企业数据库的部署方式么?是怎么部署的,又是部署在哪里的?部 ...

  7. scala 数据结构(二):数组

    1 数组-定长数组(声明泛型) 第一种方式定义数组 这里的数组等同于Java中的数组,中括号的类型就是数组的类型 val arr1 = new Array[Int](10) //赋值,集合元素采用小括 ...

  8. 数据可视化基础专题(五):Pandas基础(四) 生成对象

    引言 先介绍下 Pandas 的数据结构,毕竟数据结构是万物的基础. Pandas 有两种主要的数据结构: Series 和 DataFrame 模块导入 首先我们在代码中引入 Pandas 和 Nu ...

  9. Python之爬虫(二十五) Scrapy的中间件Downloader Middleware实现User-Agent随机切换

    总架构理解Middleware 通过scrapy官网最新的架构图来理解: 这个图较之前的图顺序更加清晰,从图中我们可以看出,在spiders和ENGINE提及ENGINE和DOWNLOADER之间都可 ...

  10. 数据可视化实例(十二): 发散型条形图 (matplotlib,pandas)

    https://datawhalechina.github.io/pms50/#/chapter10/chapter10 如果您想根据单个指标查看项目的变化情况,并可视化此差异的顺序和数量,那么散型条 ...