参考资料:猿天地   https://mp.weixin.qq.com/s/901rNhc4WhLCQ023zujRVQ 作者:尹吉欢

  当单表的数量急剧上升,超过了1千万以上,这个时候就要对表进行水平拆分。

表的水平拆分是什么?

  就是将一个表拆分成N个表,就像一块大石头,搬不动,然后切割成10块,这样就能搬的动了。原理是一样的。 除了能够分担数量的压力,同时也能分散读写请求的压力,当然这个得看你的分片算法了,合理的算法才能够让数据分配均匀并提升性能。 今天我们主要讲单库中进行表的拆分,也就是不分库,只分表。

  user表由原来的一个被拆分成了4个,数据会均匀的分布在这3个表中,也就是原来的user = user0 + user1 + user2 + user3。

  技术选型:SpringBoot + Sharding-JDBC + MyBatis

1. 核心Jar包

  同 垂直拆分

2. yml文件配置

# 数据源名称集合,对应下面数据源配置的名称
spring:
main:
allow-bean-definition-overriding: true
shardingsphere:
datasource:
names: db1
# 主数据源
db1:
type: com.alibaba.druid.pool.DruidDataSource
driver-class-name: com.mysql.cj.jdbc.Driver
url: jdbc:mysql://localhost:3306/db_user?characterEncoding=utf-8
username: ****
password: ****
sharding:
tables:
user:
# 分表配置
actual-data-nodes.db1: user_${..}
# inline 表达式
table-strategy.inline.sharding-column: id
table-strategy.inline.algorithm-expression: user_${id.longValue()%}
props:
# 开启SQL显示,默认false
sql:
show: true
  • actual-data-nodes 配置分表信息,这边用的inline表达式,翻译过来就是db1.user0,db1.user1,db1.user2,db1.user3
  • inline.sharding-column 分表的字段,这边用id分表
  • inline.algorithm-expression 分表算法行表达式,需符合groovy语法,上面的配置就是用id进行取模分片

  如果我们有更复杂的分片需求,可以自定义分片算法来实现:

sharding:
tables:
user:
# 分表字段
table-strategy.standard.sharding-column: id
# 自定义分表算法类
table-strategy.standard.precise-algorithm-class-name: com.*.*.MyPreciseShardingAlgorithm

  算法类:

public class MyPreciseShardingAlgorithm implements PreciseShardingAlgorithm<Long> {

    @Override
public String doSharding(Collection<String> availableTargetNames, PreciseShardingValue<Long> shardingValue) {
for (String tableName : availableTargetNames) {
if (tableName.endsWith(shardingValue.getValue() % 4 + "")) {
return tableName;
}
}
throw new IllegalArgumentException();
} }

  在doSharding方法中你可以根据参数shardingValue做一些处理,最终返回这条数据需要分片的表名称即可。

  除了单列字段分片,还支持多字段分片,大家可以自己去看文档操作一下。

  需要分表的进行配置,不需要分表的无需配置,数据库操作代码一行都不用改变。

  如果我们要在单库分表的基础上,再做读写分离,同样很简单,只要多配置一个从数据源就可以了,配置如下:

spring.shardingsphere.datasource.names=master,slave

# 主数据源
spring.shardingsphere.datasource.master.type=com.alibaba.druid.pool.DruidDataSource
spring.shardingsphere.datasource.master.driver-class-name=com.mysql.jdbc.Driver
spring.shardingsphere.datasource.master.url=jdbc:mysql://localhost:3306/ds_0?characterEncoding=utf-8
spring.shardingsphere.datasource.master.username=root
spring.shardingsphere.datasource.master.password=123456 # 从数据源
spring.shardingsphere.datasource.slave.type=com.alibaba.druid.pool.DruidDataSource
spring.shardingsphere.datasource.slave.driver-class-name=com.mysql.jdbc.Driver
spring.shardingsphere.datasource.slave.url=jdbc:mysql://localhost:3306/ds_1?characterEncoding=utf-8
spring.shardingsphere.datasource.slave.username=root
spring.shardingsphere.datasource.slave.password=123456 # 分表配置
spring.shardingsphere.sharding.tables.user.actual-data-nodes=ds0.user_${0..3}
spring.shardingsphere.sharding.tables.user.table-strategy.inline.sharding-column=id
spring.shardingsphere.sharding.tables.user.table-strategy.inline.algorithm-expression=user_${id.longValue()%4} # 读写分离配置
spring.shardingsphere.sharding.master-slave-rules.ds0.master-data-source-name=master
spring.shardingsphere.sharding.master-slave-rules.ds0.slave-data-source-names=slave

Sharding-JDBC实现水平拆分-单库分表的更多相关文章

  1. Sharding-JDBC:单库分表的实现

    剧情回顾 前面,我们一共学习了读写分离,垂直拆分,垂直拆分+读写分离.对应的文章分别如下: Sharding-JDBC:查询量大如何优化? Sharding-JDBC:垂直拆分怎么做? 通过上面的优化 ...

  2. SpringBoot+Mybatis-Plus整合Sharding-JDBC5.1.1实现单库分表【全网最新】

    一.前言 小编最近一直在研究关于分库分表的东西,前几天docker安装了mycat实现了分库分表,但是都在说mycat的bug很多.很多人还是倾向于shardingsphere,其实他是一个全家桶,有 ...

  3. mycat 单库分表

    上次把mycat的读写分离搞定了,这次试下单库分表,顾名思义就是在一个库里把一个表拆分为多个 需要配置的配置文件为 schema.xml 配置内容如下 <!DOCTYPE mycat:schem ...

  4. springboot with appache sharding 3.1 单库分表

    配置文件相关信息: #开发 server.port=7200 spring.application.name=BtspIsmpServiceOrderDev eureka.client.service ...

  5. Spring Boot中整合Sharding-JDBC单库分表示例

    本文是Sharding-JDBC采用Spring Boot Starter方式配置第二篇,第一篇是读写分离讲解,请参考:<Spring Boot中整合Sharding-JDBC读写分离示例> ...

  6. mycat 单库分表实践

    参考 https://blog.csdn.net/sq2006hjp/article/details/78732227 Mycat采用的水平拆分,不管是分库还是分表,都是水平拆分的.分库是指,把一个大 ...

  7. mycat使用之MySQL单库分表及均分数据

    转载自 https://blog.csdn.net/smilefyx/article/details/72810531 1.首先在Mycat官网下载安装包,这里就以最新的1.6版本为例,下载地址为:  ...

  8. MYSQL数据库数据拆分之分库分表总结

    数据存储演进思路一:单库单表 单库单表是最常见的数据库设计,例如,有一张用户(user)表放在数据库db中,所有的用户都可以在db库中的user表中查到. 数据存储演进思路二:单库多表 随着用户数量的 ...

  9. <转>MYSQL数据库数据拆分之分库分表总结

    数据存储演进思路一:单库单表 单库单表是最常见的数据库设计,例如,有一张用户(user)表放在数据库db中,所有的用户都可以在db库中的user表中查到. 数据存储演进思路二:单库多表 随着用户数量的 ...

随机推荐

  1. SSTI-服务端模板注入

    SSTI-服务端模板注入漏洞 原理: 服务端模板注入是由于服务端接收了用户的输入,将其作为 Web 应用模板内容的一部分,在进行目标编译渲染的过程中,执行了用户插入的恶意内容,因而导致了敏感信息泄露. ...

  2. 什么?你还不会通过纯js提交表单?

    如果程序已经封装好了, 不管后台是java .asp.net   .还是php   ?这个时候你的客户突然追加说我要 追加表单验证?   what  妇产科    怎么办? submit  自带刷新效 ...

  3. like's photos

    wallhaven官网

  4. python入门007

    一.深浅copy 浅拷贝:是把原列表第一层的内存地址完全拷贝一份给新列表.即只能保证对原列表中第一层地址(不可变类型)的改操作不受影响,涉及到原列表中第二层地址(可变类型)的改操作时,原列表变,新列表 ...

  5. WPF DataGrid ScrollBar Style

    效果图如下 代码 <DataGrid.Resources> <Style TargetType="{x:Type ScrollBar}"> <Sett ...

  6. shell进阶篇之数组应用案例

    数组中可以存放多个值. Shell 只支持一维数组(不支持多维数组),初始化时不需要定义数组大小. 与大部分编程语言类似,数组元素的下标由0开始. Shell 数组用括号来表示,元素用"空格 ...

  7. 不会用Java Future,我怀疑你泡茶没我快, 又是超长图文!!

    你有一个思想,我有一个思想,我们交换后,一个人就有两个思想 If you can NOT explain it simply, you do NOT understand it well enough ...

  8. MCMC随机采样

    1 MCMC蒙特卡罗方法 作为一种随机采样方法,马尔科夫链蒙特卡罗(Markov Chain Monte Carlo,以下简称MCMC)在机器学习,深度学习以及自然语言处理等领域都有广泛的应用,是很多 ...

  9. SQLAlchemy(二):SQLAlchemy对数据的增删改查操作、属性常用数据类型详解

    SQLAlchemy02 /SQLAlchemy对数据的增删改查操作.属性常用数据类型详解 目录 SQLAlchemy02 /SQLAlchemy对数据的增删改查操作.属性常用数据类型详解 1.用se ...

  10. hihoCoder 1062 最近公共祖先·一 最详细的解题报告

    题目来源:最近公共祖先·一 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 题目描述 小Ho最近发现了一个神奇的网站!虽然还不够像58同城那样神奇,但这个网站仍然让小Ho乐在其 ...