第二篇题解!

可能是退役之前的最后一篇题解了

(好像总共都只写了两篇)

不说了,讲题:

题面

题意:

有T个数据

有一颗树(保证所有的的节点都是相连的),有n个节点,每个节点都有相应的权值与序号,现在你要进行M次操作,操作是:

找到权值最大的节点(如果有权值相同且又是最大的节点,则选择序号较小的节点),与节点直接相连的节点权值+1(本身不增加权值)

最后输出权值最大的节点(有相同的则输出序号较小的节点)。

数据范围:

对于 100% 的数据,1≤N≤2×10^6,

1≤M≤10^18,

1≤A i≤2^31-1,

1≤T≤10

部分分就不写了。

反正很大就是了,看到这个M小于等于10的18次方,你怕了吗


题解(主要是思路):

首先看题目,有人看完题面可能会不知道为什么是一棵树只有你会,题目给出的是N个点,由N-1条双向路径相连,

C 国一共有 N 个村庄,N-1 条道路。这些道路都可以双向通行。
保证小 S 可以从一座村庄到其他任何一座村庄。
这 N 个村庄编号为 1 到 N。

保证小 S 可以从一座村庄到其他任何一座村庄

众所周知,想要组成环,至少需要与节点数相同的路径,而题意又保证各个节点一定相连,就必须要N条路径,但题目给出的只有n-1条路径

,则是一棵树。

好啰嗦

看完题意看数据范围,发现M的范围巨大,连O(M)的算法都过不了,不可做

于是我陷入了思考,先写一下数据推推规律:

三个点
2 6 3
都相连
2->6->3
M次操作
//1:
num[2]:6最大
3 6 4
//2:
num[2]:6最大
4 6 5
//3:
num[2]:6最大
5 6 6
出现了!相等的点!但是num[2]序号小,答案依旧是选num[2];
//4:
num[2]:6最大
6 6 7
num[3]大于num[2]了;
//5:
num[3]:7最大
6 7 7
又相等了,num[2]序号小,选num[2]。
//6:
num[2]:7最大
7 7 8
num[3]最大了

推到这就差不多了,可以得出以下规律:

(此处的权值指的是初始权值)

x1为权值最大的节点,y1为与它相连的权值相对最大的节点

  • 只需要记录下x1与y1,而其他的节点,拜托,他们超逊的!可以从数据中看出,与6相连的num[1]由于小于num[2],在答案的选择中没有任何竞争力,不与权值最大的节点直接相连的节点就更不要说了。(觉得不对的同学可以自己写几组数据试试)

  • 在M小于num[2]与num[3]的差时,答案恒为num[2],(num[2]:哼,没点时间还想超过我?)可以转化为-----当M小于x1-y1,选x1;

  • 然后就是M>=他们的差时:看数据,第3次操作到第6次操作答案是有循环的,很容易得到是跟M的奇偶性有关的(等于的话就是直接取序号最小就行了),先将M减去x1-y1,奇数取y1,偶数取x1.

这一切都是建立在这个图是一颗树的前提下。

代码实现就行

然后就没了

吗?

还有特判!

在代码实现中,当n=1时的情况要特殊考虑

我就是被这个点坑杀了4个点

85分没了

结束

不点个赞再走?

有什么意见可以发在评论区哦

「MCOI-03」村国题解的更多相关文章

  1. LuoguP7043 「MCOI-03」村国 题解

    Content 有 \(T\) 组询问,每组询问给定一个有 \(n\) 个节点的数,编号为 \(1\sim n\),每个节点一开始都有权值 \(a_i\).现有 \(m\) 次操作,每次操作选择树上所 ...

  2. LuoguP7127 「RdOI R1」一次函数(function) 题解

    Content 设 \(S_k\) 为直线 \(f(x)=kx+k-1\),直线 \(f(x)=(k+1)x+k\) 与 \(x\) 轴围成的三角形的面积.现在给出 \(t\) 组询问,每组询问给定一 ...

  3. LOJ #2541. 「PKUWC 2018」猎人杀(容斥 , 期望dp , NTT优化)

    题意 LOJ #2541. 「PKUWC 2018」猎人杀 题解 一道及其巧妙的题 , 参考了一下这位大佬的博客 ... 令 \(\displaystyle A = \sum_{i=1}^{n} w_ ...

  4. LOJ #2540. 「PKUWC 2018」随机算法(概率dp)

    题意 LOJ #2540. 「PKUWC 2018」随机算法 题解 朴素的就是 \(O(n3^n)\) dp 写了一下有 \(50pts\) ... 大概就是每个点有三个状态 , 考虑了但不在独立集中 ...

  5. 「GXOI / GZOI2019」简要题解

    「GXOI / GZOI2019」简要题解 LOJ#3083. 「GXOI / GZOI2019」与或和 https://loj.ac/problem/3083 题意:求一个矩阵的所有子矩阵的与和 和 ...

  6. 【题解】#6622. 「THUPC 2019」找树 / findtree(Matrix Tree+FWT)

    [题解]#6622. 「THUPC 2019」找树 / findtree(Matrix Tree+FWT) 之前做这道题不理解,有一点走火入魔了,甚至想要一本近世代数来看,然后通过人类智慧思考后发现, ...

  7. 「POJ 3666」Making the Grade 题解(两种做法)

    0前言 感谢yxy童鞋的dp及暴力做法! 1 算法标签 优先队列.dp动态规划+滚动数组优化 2 题目难度 提高/提高+ CF rating:2300 3 题面 「POJ 3666」Making th ...

  8. FileUpload控件「批次上传 / 多档案同时上传」的范例--以「流水号」产生「变量名称」

    原文出處  http://www.dotblogs.com.tw/mis2000lab/archive/2013/08/19/multiple_fileupload_asp_net_20130819. ...

  9. LOJ #2542. 「PKUWC 2018」随机游走(最值反演 + 树上期望dp + FMT)

    写在这道题前面 : 网上的一些题解都不讲那个系数是怎么推得真的不良心 TAT (不是每个人都有那么厉害啊 , 我好菜啊) 而且 LOJ 过的代码千篇一律 ... 那个系数根本看不出来是什么啊 TAT ...

随机推荐

  1. 微信App支付接入步骤&支付中前后端交互流程

    最近对微信App支付(App端集成微信支付SDK)申请步骤,以及终端在进行微信支付时商户App.商户Server.微信App.微信支付Server的交互流程进行了简单了解.这篇文章应该算是学习笔记,分 ...

  2. Python-求序列长度和序列长度协议-len() __len__

    len() 求序列的长度 print(len("beimenchuixue")) print(len([1, 2, 3])) __len__ 对象中实现这个方法,则 len() 方 ...

  3. Centos-内核核心组成

    linux内核,相当于linux大脑,高可靠和高稳定都是针对内核来说 完整linux核心组成部分 1. 内存管理 合理有效的管理整个系统的物理内存,同时快速响应内核各子系统对内存分配的请求 2. 进程 ...

  4. Python练习题 012:字符统计

    [Python练习题 012] 输入一行字符,分别统计出其中英文字母.空格.数字和其它字符的个数. ----------------------------------------------- 这题 ...

  5. 多线程之ReentrantLock篇(五)

    昨天有说过后面讲ReentrantLock,今天我们这篇幅就全局的讲解下,我们在Lock出来前,解决并发问题没得选只能用Synchronized. 一.ReentrantLock PK synchro ...

  6. SetDlgItemInt(函数详解)

    参考:https://blog.csdn.net/for_cxc/article/details/51799194 SetDlgItemInt(hwnd, IDC_TEXT, FREQ_INIT, F ...

  7. 洛谷比赛 「EZEC」 Round 4

    洛谷比赛 「EZEC」 Round 4 T1 zrmpaul Loves Array 题目描述 小 Z 有一个下标从 \(1\) 开始并且长度为 \(n\) 的序列,初始时下标为 \(i\) 位置的数 ...

  8. 对do{ }while();一直以来的误解 -----如何理解do{ }while( );语句

    在do{ }while( ); 语句中,我之前的理解是:先执行一次do{ },然后判断while( )中的内容,一般里面都是字符串或者数值作比较嘛,所以理解是:如果判断的这个东西,在这个范围中(等于这 ...

  9. 让我们创建屏幕- Android UI布局和控件

    下载LifeCycleTest.zip - 278.9 KB 下载ViewAndLayoutLessons_-_Base.zip - 1.2 MB 下载ViewAndLayoutLessons_-_C ...

  10. Xnip Mac上方便好用的截图工具

    Xnip Mac上方便好用的截图工具 标注 Xnip 拥有齐全的标注功能,您可以对截取的图片进行标注,在标注的同时还能重新调整截图大小. 查看标注操作 GIF 滚动截图 Xnip 的滚动截图功能可以让 ...