转载:https://www.iteblog.com/archives/1591.html

当我们正确地部署好Spark Streaming,我们就可以使用Spark Streaming提供的零数据丢失机制。为了体验这个关键的特性,你需要满足以下几个先决条件:

  1、输入的数据来自可靠的数据源和可靠的接收器;
  2、应用程序的metadata被application的driver持久化了(checkpointed );
  3、启用了WAL特性(Write ahead log);

一、可靠的数据源和可靠的接收器

  对于一些输入数据源(比如Kafka),Spark Streaming可以对已经接收的数据进行确认。输入的数据首先被接收器(receivers )所接收,然后存储到Spark中(默认情况下,数据保存到2个执行器中以便进行容错)。数据一旦存储到Spark中,接收器可以对它进行确认(比如,如果消费Kafka里面的数据时可以更新Zookeeper里面的偏移量)。这种机制保证了在接收器突然挂掉的情况下也不会丢失数据:因为数据虽然被接收,但是没有被持久化的情况下是不会发送确认消息的。所以在接收器恢复的时候,数据可以被原端重新发送。

二、元数据持久化(Metadata checkpointing)

  可靠的数据源和接收器可以让我们从接收器挂掉的情况下恢复(或者是接收器运行的Exectuor和服务器挂掉都可以)。但是更棘手的问题是,如果Driver挂掉如何恢复?对此开发者们引入了很多技术来让Driver从失败中恢复。其中一个就是对应用程序的元数据进行Checkpint。利用这个特性,Driver可以将应用程序的重要元数据持久化到可靠的存储中,比如HDFS、S3;然后Driver可以利用这些持久化的数据进行恢复。元数据包括:
  1、配置;
  2、代码;
  3、那些在队列中还没有处理的batch(仅仅保存元数据,而不是这些batch中的数据)

由于有了元数据的Checkpint,所以Driver可以利用他们重构应用程序,而且可以计算出Driver挂掉的时候应用程序执行到什么位置。

三、可能存在数据丢失的场景

令人惊讶的是,即使是可靠的数据源、可靠的接收器和对元数据进行Checkpint,仍然不足以阻止潜在的数据丢失。我们可以想象出以下的糟糕场景:

  1、两个Exectuor已经从接收器中接收到输入数据,并将它缓存到Exectuor的内存中;
  2、接收器通知输入源数据已经接收;
  3、Exectuor根据应用程序的代码开始处理已经缓存的数据;
  4、这时候Driver突然挂掉了;
  5、从设计的角度看,一旦Driver挂掉之后,它维护的Exectuor也将全部被kill;
  6、既然所有的Exectuor被kill了,所以缓存到它们内存中的数据也将被丢失。结果,这些已经通知数据源但是还没有处理的缓存数据就丢失了;
  7、缓存的时候不可能恢复,因为它们是缓存在Exectuor的内存中,所以数据被丢失了。

这对于很多关键型的应用程序来说非常的糟糕,不是吗?

四、WAL(Write ahead log)

为了解决上面提到的糟糕场景,Spark Streaming 1.2开始引入了WAL机制。

  启用了WAL机制,所以已经接收的数据被接收器写入到容错存储中,比如HDFS或者S3。由于采用了WAl机制,Driver可以从失败的点重新读取数据,即使Exectuor中内存的数据已经丢失了。在这个简单的方法下,Spark Streaming提供了一种即使是Driver挂掉也可以避免数据丢失的机制。

五、At-least-once语义

虽然WAL可以确保数据不丢失,它并不能对所有的数据源保证exactly-once语义。想象一下可能发生在Spark Streaming整合Kafka的糟糕场景。

  1、接收器接收到输入数据,并把它存储到WAL中;
  2、接收器在更新Zookeeper中Kafka的偏移量之前突然挂掉了;

    3、Spark Streaming假设输入数据已成功收到(因为它已经写入到WAL中),然而Kafka认为数据被没有被消费,因为相应的偏移量并没有在Zookeeper中更新;
  4、过了一会,接收器从失败中恢复;
  5、那些被保存到WAL中但未被处理的数据被重新读取;
  6、一旦从WAL中读取所有的数据之后,接收器开始从Kafka中消费数据。因为接收器是采用Kafka的High-Level Consumer API实现的,它开始从Zookeeper当前记录的偏移量开始读取数据,但是因为接收器挂掉的时候偏移量并没有更新到Zookeeper中,所有有一些数据被处理了2次。

六、WAL的缺点

除了上面描述的场景,WAL还有其他两个不可忽略的缺点:

  1、WAL减少了接收器的吞吐量,因为接受到的数据必须保存到可靠的分布式文件系统中。
  2、对于一些输入源来说,它会重复相同的数据。比如当从Kafka中读取数据,你需要在Kafka的brokers中保存一份数据,而且你还得在Spark Streaming中保存一份。

七、Kafka direct API

为了解决由WAL引入的性能损失,并且保证 exactly-once 语义,Spark Streaming 1.3中引入了名为Kafka direct API。
  这个想法对于这个特性是非常明智的。Spark driver只需要简单地计算下一个batch需要处理Kafka中偏移量的范围,然后命令Spark Exectuor直接从Kafka相应Topic的分区中消费数据。换句话说,这种方法把Kafka当作成一个文件系统,然后像读文件一样来消费Topic中的数据。

在这个简单但强大的设计中:

  1、不再需要Kafka接收器,Exectuor直接采用Simple Consumer API从Kafka中消费数据。
  2、不再需要WAL机制,我们仍然可以从失败恢复之后从Kafka中重新消费数据;
  3、exactly-once语义得以保存,我们不再从WAL中读取重复的数据。

Spark Streaming和Kafka整合是如何保证数据零丢失的更多相关文章

  1. 【转】Spark Streaming和Kafka整合开发指南

    基于Receivers的方法 这个方法使用了Receivers来接收数据.Receivers的实现使用到Kafka高层次的消费者API.对于所有的Receivers,接收到的数据将会保存在Spark ...

  2. Spark Streaming使用Kafka保证数据零丢失

    来自: https://community.qingcloud.com/topic/344/spark-streaming使用kafka保证数据零丢失 spark streaming从1.2开始提供了 ...

  3. Spark Streaming和Kafka整合开发指南(二)

    在本博客的<Spark Streaming和Kafka整合开发指南(一)>文章中介绍了如何使用基于Receiver的方法使用Spark Streaming从Kafka中接收数据.本文将介绍 ...

  4. Spark Streaming和Kafka整合开发指南(一)

    Apache Kafka是一个分布式的消息发布-订阅系统.可以说,任何实时大数据处理工具缺少与Kafka整合都是不完整的.本文将介绍如何使用Spark Streaming从Kafka中接收数据,这里将 ...

  5. Spark Streaming和Kafka整合保证数据零丢失

    当我们正确地部署好Spark Streaming,我们就可以使用Spark Streaming提供的零数据丢失机制.为了体验这个关键的特性,你需要满足以下几个先决条件: 1.输入的数据来自可靠的数据源 ...

  6. Spark Streaming与kafka整合实践之WordCount

    本次实践使用kafka console作为消息的生产者,Spark Streaming作为消息的消费者,具体实践代码如下 首先启动kafka server .\bin\windows\kafka-se ...

  7. Spark streaming消费Kafka的正确姿势

    前言 在游戏项目中,需要对每天千万级的游戏评论信息进行词频统计,在生产者一端,我们将数据按照每天的拉取时间存入了Kafka当中,而在消费者一端,我们利用了spark streaming从kafka中不 ...

  8. spark streaming 对接kafka记录

    spark streaming 对接kafka 有两种方式: 参考: http://group.jobbole.com/15559/ http://blog.csdn.net/kwu_ganymede ...

  9. Spark Streaming连接Kafka的两种方式 direct 跟receiver 方式接收数据的区别

    Receiver是使用Kafka的高层次Consumer API来实现的. Receiver从Kafka中获取的数据都是存储在Spark Executor的内存中的,然后Spark Streaming ...

随机推荐

  1. 极光实验室 第一次考核wp

    第一道题: 上来就让我买flag,用御剑扫目录,发现了这道题有源码index.php.bak!直接下载. <meta charset='UTF-8'> <title>极光实验室 ...

  2. tcp socket学习

    更新一波学的socket编程,socket还是比较重要的,探测端口,连接服务底层都是socket编程.tcp有server 和 client.client和udp发送差不多. server端是建立了两 ...

  3. Ambari HDP集群搭建全攻略

    世界上最快的捷径,就是脚踏实地,本文已收录[架构技术专栏]关注这个喜欢分享的地方. 最近因为工作上需要重新用Ambari搭了一套Hadoop集群,就把搭建的过程记录了下来,也希望给有同样需求的小伙伴们 ...

  4. MySQL技术内幕InnoDB存储引擎(三)——文件相关

    构成MySQL数据库和InnoDB存储引擎表的文件类型有: 参数文件:MySQL实例运行时需要的参数就是存储在这里. 日志文件:用来记录MySQL实例对某种条件做出响应时写入的文件. socket文件 ...

  5. 三、git学习之——管理修改、撤销修改、删除文件

    一.管理修改 现在,假定你已经完全掌握了暂存区的概念.下面,我们要讨论的就是,为什么Git比其他版本控制系统设计得优秀,因为Git跟踪并管理的是修改,而非文件. 你会问,什么是修改?比如你新增了一行, ...

  6. Java-web-多个独立项目之间相互调用实践

    本篇文章只涉及到应用层面,没有涉及到什么底层原理之类的,我目前的实力还没有达到那个级别.如果是大神级别的人看到这篇文章,请跳过. 项目框架也已经是搭建好了的,springboot版本为1.5,数据库操 ...

  7. 本地安装yum源脚本

    rpm -qa|grep yum   //检查是否安装了yum. 如果没有安装就执行下面的文件 创建一个以xxx.sh结尾的文件 #!/bin/bash #创建两个文件用于挂载文件 mkdir /mn ...

  8. c++笔试题3

    一.[阿里C++面试题]1.如何初始化一个指针数组.答案: 错题解析:首先明确一个概念,就是指向数组的指针,和存放指针的数组. 指向数组的指针:char (*array)[5];含义是一个指向存放5个 ...

  9. 数字crawlergo动态爬虫结合长亭XRAY被动扫描

    群里师傅分享了个挖洞的视频,搜了一下,大概就是基于这篇文章录的 https://xz.aliyun.com/t/7047 (小声哔哔一下,不得不说,阿里云先知社区和360酒仙桥六号部队公众号这两个地方 ...

  10. 嵌入式开发笔记——调试组件SEGGER_HardFaultHandle

    一.前言 在使用Cortex-M内核的MCU进行开发时,有时候会因为对内存错误访问等原因造成程序产生异常从而进入HardFaultHandler错误中断.如果程序结构比较复杂,尤其是运行了RTOS时可 ...