题解 洛谷 P1552 【[APIO2012]派遣】
根据题意,我们不难发现忍者之间的关系是树形结构。
发现答案的统计只是在该节点的子树中,因此我们考虑通过树形\(DP\)来解决问题。
从叶子节点开始,从下往上考虑,因为一个节点的最优答案只与他的领导力和在子树中选了几个点有关,与选哪些点无关,所以我们要最大化选点的个数。
贪心策略即为尽可能的多选点,当选出的点的薪水超过预算时,删去当前选出的点中薪水最大的点,通过这样的策略来保证我们能选出最多的点。
通过可并堆(左偏树)来实现,同时维护一些信息,选出点的薪水总和\(sum\),选出点的个数\(siz\)。
其他的一些细节就看代码吧,统计答案记得开\(long\ long\)。
\(code:\)
#include<bits/stdc++.h>
#define maxn 200010
using namespace std;
typedef long long ll;
template<typename T> inline void read(T &x)
{
x=0;char c=getchar();bool flag=false;
while(!isdigit(c)){if(c=='-')flag=true;c=getchar();}
while(isdigit(c)){x=(x<<1)+(x<<3)+(c^48);c=getchar();}
if(flag)x=-x;
}
ll n,m,root,ans;
ll fa[maxn],ls[maxn],rs[maxn],dis[maxn],val[maxn],l[maxn],sum[maxn],siz[maxn];
struct edge
{
int to,nxt;
}e[maxn];
int head[maxn],edge_cnt;
void add(int from,int to)
{
e[++edge_cnt]=(edge){to,head[from]};
head[from]=edge_cnt;
}
int find(int x)
{
return fa[x]==x?x:fa[x]=find(fa[x]);
}
int merge(int x,int y)
{
if(x==y) return 0;
if(!x||!y) return x+y;
if(val[x]<val[y]) swap(x,y);
rs[x]=merge(rs[x],y),fa[rs[x]]=x;
if(dis[ls[x]]<dis[rs[x]]) swap(ls[x],rs[x]);
if(rs[x]) dis[x]=dis[rs[x]]+1;
else dis[x]=0;
return x;
}
void del(int x)
{
fa[ls[x]]=ls[x],fa[rs[x]]=rs[x];
fa[x]=merge(ls[x],rs[x]);
}
void dfs(int x)
{
for(int i=head[x];i;i=e[i].nxt)
{
int y=e[i].to;
dfs(y);
siz[x]+=siz[y];
sum[x]+=sum[y];
merge(find(x),find(y));
}
while(sum[x]>m)
{
int rootx=find(x);
siz[x]--;
sum[x]-=val[rootx];
del(rootx);
}
ans=max(ans,l[x]*siz[x]);
}
int main()
{
read(n),read(m);
for(int i=1;i<=n;++i)
{
int fath;
read(fath),read(val[i]),read(l[i]);
sum[i]=val[i],siz[i]=1,fa[i]=i;
if(fath) add(fath,i);
else root=i;
}
dfs(root);
printf("%lld\n",ans);
return 0;
}
题解 洛谷 P1552 【[APIO2012]派遣】的更多相关文章
- 洛谷P1552 [APIO2012] 派遣 [左偏树,树形DP]
题目传送门 忍者 Description 在一个忍者的帮派里,一些忍者们被选中派遣给顾客,然后依据自己的工作获取报偿.在这个帮派里,有一名忍者被称之为 Master.除了 Master以外,每名忍者都 ...
- [洛谷P1552][APIO2012]派遣
题目大意:有一棵$n$个点的树,和一个费用$m$,每个点有一个费用和价值,请选一个点,再从它的子树中选取若干个点,使得那个点的价值乘上选的点的个数最大,要求选的点费用总和小于等于$m$ 题解:树形$d ...
- [洛谷P1552] [APIO2012]派遣(左偏树)
这道题是我做的左偏树的入门题,奈何还是看了zsy大佬的题解才能过,唉,我太弱了. 左偏树总结 Part 1 理解题目 很显然,通过管理关系的不断连边,最后连出来的肯定是一棵树,那么不难得出,当一个忍者 ...
- 2018.07.31洛谷P1552 [APIO2012]派遣(可并堆)
传送门 貌似是个可并堆的模板题,笔者懒得写左偏堆了,直接随机堆水过.实际上这题就是维护一个可合并的大根堆一直从叶子合并到根,如果堆中所有数的和超过了上限就一直弹直到所有数的和不超过上限为止,最后对于当 ...
- 洛谷P1552 [APIO2012]派遣(左偏树)
传送门 做这题的时候现学了一波左偏树2333(好吧其实是当初打完板子就给忘了) 不难发现肯定是选子树里权值最小的点且选得越多越好 但如果在每一个点维护一个小根堆,我们得一直找知道权值大于m为止,时间会 ...
- 洛谷1552 [APIO2012]派遣
洛谷1552 [APIO2012]派遣 原题链接 题解 luogu上被刷到了省选/NOI- ...不至于吧 这题似乎有很多办法乱搞? 对于一个点,如果他当管理者,那选的肯定是他子树中薪水最少的k个,而 ...
- [luogu P1552] [APIO2012]派遣
[luogu P1552] [APIO2012]派遣 题目背景 在一个忍者的帮派里,一些忍者们被选中派遣给顾客,然后依据自己的工作获取报偿. 题目描述 在这个帮派里,有一名忍者被称之为Master.除 ...
- 题解 洛谷P5018【对称二叉树】(noip2018T4)
\(noip2018\) \(T4\)题解 其实呢,我是觉得这题比\(T3\)水到不知道哪里去了 毕竟我比较菜,不大会\(dp\) 好了开始讲正事 这题其实考察的其实就是选手对D(大)F(法)S(师) ...
- 题解 洛谷 P3396 【哈希冲突】(根号分治)
根号分治 前言 本题是一道讲解根号分治思想的论文题(然鹅我并没有找到论文),正 如论文中所说,根号算法--不仅是分块,根号分治利用的思想和分块像 似却又不同,某一篇洛谷日报中说过,分块算法实质上是一种 ...
随机推荐
- springcloud2.0 添加配置中心遇到的坑
新手入门,在springcloud 配置config的时候遇到了几个比较烦的坑 先说1.5x版本的一些配置吧 首先是端点暴露的方式 management: security: enabled: fal ...
- python 类的内置函数2
必须明确创建对象的过程: 先创建空对象,执行初始化将属性存储到对象的名称空间中! 所以在__call__函数中必须完成这两步操作,同时将初始化完成的对象返回给调用者 一旦覆盖了__call__函数,就 ...
- SQL注入之MySQL常用的查询语句
MySQL是一种使用很广的数据库,大部分网站都是用MySQL,所以熟悉对MySQL数据库的注入很重要. 首先来说下MySQL注入的相关知识点 在MySQL5.0版本之后,MySQL默认在数据库存放一个 ...
- 【原】二进制部署 k8s 1.18.3
二进制部署 k8s 1.18.3 1.相关前置信息 1.1 版本信息 kube_version: v1.18.3 etcd_version: v3.4.9 flannel: v0.12.0 cored ...
- Illegal reflective access by org.apache.hadoop.security.authentication.util.KerberosUtil
在使用Java API操作HBase时抛出如下异常: Illegal reflective access by org.apache.hadoop.security.authentication.ut ...
- python文件处理-将图像根据坐标画矩形标记
内容涉及:文件遍历,选取csv后缀文件,用cv操作图片 import csv import os import sys import numpy as np import copy import sh ...
- 前端笔记(关于webpack打包时内存溢出问题的解决)
首先安装increase-memory-limit cnpm install -g increase-memory-limit 重启cmd,并在项目跟目录中运行一下 increase-memory-l ...
- 给大家分享一下less的使用几个技巧
1.层级关系 让这个box范围内的全部包进来,这样的话就完美的进行调节,再也不用到处找第几行第几个,我刚才在哪个位置给覆盖了.一看便知! .box{ width: %; height: 300px; ...
- 协同合约HACKATHON 0X03;
协同合约HACKATHON 0X03; 使用Fetch.AI技术开发一个共享行程协同合约.超过100,000个FET代币奖励. 介 绍 拼车是对你的钱包和环境都非常有益的,因此UberPool™等共享 ...
- Linux 相关学习内容(不定期更新)
Linux 主要目录 / 根目录,在 linux 下有且只有一个根目录,所有的东西都是从这里开始 /bin 可执行二进制文件的目录,如常用的命令,ls, tar, mv, cat.. /boot 放置 ...