题意:两只乌龟从1 1走到n m,只能走没有'#'的位置,问你两只乌龟走的时候不见面的路径走法有几种

思路:LGV定理模板。但是定理中只能从n个不同起点走向n个不同终点,那么需要转化。显然必有一只从1, 2走到 n - 1, m,另一只从2, 1走到 n, m - 1。

代码:

#include<cmath>
#include<set>
#include<map>
#include<queue>
#include<cstdio>
#include<vector>
#include<cstring>
#include <iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const int maxn = 3000 + 10;
const int M = maxn * 30;
const ull seed = 131;
const int INF = 0x3f3f3f3f;
const int MOD = 1000000007;
char mp[maxn][maxn];
ll dp[maxn][maxn];
ll e[5][5];
ll guass(int n, ll p){
ll ans = 1, f = 1;
for(int i = 1; i <= n; i++){
for(int j = i + 1; j <= n; j++){
int x = i, y = j;
while(e[y][i]){
ll t = e[x][i] / e[y][i];
for(int k = i; k <= n; k++)
e[x][k] = (e[x][k] - e[y][k] * t % p) % p;
swap(x,y);
}
if(x != i){
for(int k = 1; k <= n; k++)
swap(e[i][k], e[j][k]);
f = -f;
}
}
ans = ans * e[i][i] % p;
if(ans == 0) return 0;
}
return (ans * f + p) % p;
}
int main(){
int n, m;
scanf("%d%d", &n, &m);
for(int i = 1; i <= n; i++)
scanf("%s", mp[i] + 1);
memset(dp, 0, sizeof(dp));
dp[1][2] = 1;
for(int i = 1; i <= n; i++){
for(int j = 2; j <= m; j++){
if(i == 1 && j == 2) continue;
if(mp[i][j] == '#') continue;
dp[i][j] = 0;
if(j - 1 >= 1 && mp[i][j - 1] != '#')
dp[i][j] += dp[i][j - 1];
if(i - 1 >= 1 && mp[i - 1][j] != '#')
dp[i][j] += dp[i - 1][j];
dp[i][j] = dp[i][j] % MOD;
}
}
e[1][1] = dp[n - 1][m], e[1][2] = dp[n][m - 1];
memset(dp, 0, sizeof(dp));
dp[2][1] = 1;
for(int i = 2; i <= n; i++){
for(int j = 1; j <= m; j++){
if(i == 2 && j == 1) continue;
if(mp[i][j] == '#') continue;
dp[i][j] = 0;
if(j - 1 >= 1 && mp[i][j - 1] != '#')
dp[i][j] += dp[i][j - 1];
if(i - 1 >= 1 && mp[i - 1][j] != '#')
dp[i][j] += dp[i - 1][j];
dp[i][j] = dp[i][j] % MOD;
}
}
e[2][1] = dp[n - 1][m], e[2][2] = dp[n][m - 1];
printf("%lld\n", guass(2, MOD));
return 0;
}

CodeForces 348D Turtles(LGV定理)题解的更多相关文章

  1. Codeforces 348D Turtles LGV

    Turtles 利用LGV转换成求行列式值. #include<bits/stdc++.h> #define LL long long #define fi first #define s ...

  2. Codeforces 348D DP + LGV定理

    题意及思路:https://www.cnblogs.com/chaoswr/p/9460378.html 代码: #include <bits/stdc++.h> #define LL l ...

  3. codeforces 348D Turtles

    codeforces 348D Turtles 题意 题解 代码 #include<bits/stdc++.h> using namespace std; #define fi first ...

  4. Codeforces.348D.Turtles(容斥 LGV定理 DP)

    题目链接 \(Description\) 给定\(n*m\)的网格,有些格子不能走.求有多少种从\((1,1)\)走到\((n,m)\)的两条不相交路径. \(n,m\leq 3000\). \(So ...

  5. CodeForces - 348D Turtles(LGV)

    https://vjudge.net/problem/CodeForces-348D 题意 给一个m*n有障碍的图,求从左上角到右下角两条不相交路径的方案数. 分析 用LGV算法.从(1,1)-(n, ...

  6. cf348D. Turtles(LGV定理 dp)

    题意 题目链接 在\(n \times m\)有坏点的矩形中找出两条从起点到终点的不相交路径的方案数 Sol Lindström–Gessel–Viennot lemma的裸题? 这个定理是说点集\( ...

  7. LGV定理 (CodeForces 348 D Turtles)/(牛客暑期多校第一场A Monotonic Matrix)

    又是一个看起来神奇无比的东东,证明是不可能证明的,这辈子不可能看懂的,知道怎么用就行了,具体看wikihttps://en.wikipedia.org/wiki/Lindstr%C3%B6m%E2%8 ...

  8. LGV定理

    LGV定理用于解决路径不相交问题. 定理 有 \(n\) 个起点 \(1, 2, 3, ..., n\),它们 分别对应 要到 \(n\) 个终点 \(A, B, C, ..., X\),并且要求路径 ...

  9. Codeforces Round #182 (Div. 1)题解【ABCD】

    Codeforces Round #182 (Div. 1)题解 A题:Yaroslav and Sequence1 题意: 给你\(2*n+1\)个元素,你每次可以进行无数种操作,每次操作必须选择其 ...

随机推荐

  1. ArchLinux安装后所需要的环境和工具

    ArchLinux安装后所需要的环境和工具 工具: Dolphin 文件管理器 ntfs-3G 移动硬盘挂载 octopi 实时检查更新 KDE Connect 手机电脑远程连接 DBeaver Co ...

  2. git的使用学习笔记4--创建分支

    1.在git上新建分支 查看本地分支 git branch 查看远程分支 git branch -a 创建一个分支 git checkout -b branch1 再次查看远程分支可以看到该分支 2. ...

  3. 如何设计一个亿级网关(API Gateway)?

    1.背景 1.1 什么是API网关 API网关可以看做系统与外界联通的入口,我们可以在网关进行处理一些非业务逻辑的逻辑,比如权限验证,监控,缓存,请求路由等等. 1.2 为什么需要API网关 RPC协 ...

  4. Okio Okio源码分析

    概述 Okio 作为 Okhttp 底层 io 库,它补充了 java.io 和 java.nio 的不足,使访问.存储和处理数据更加容易.Okio 的特点如下: okio 是一个由 square 公 ...

  5. three.js cannon.js物理引擎之制作拥有物理特性的汽车

    今天郭先生说一说使用cannon.js的车辆辅助类让我们的汽车模型拥有物理特性.效果图如下,在线案例请点击博客原文. 下面我们说一下今天要使用的两个类,并简单的看看他们的物理意义 1. Raycast ...

  6. python 利用正则表达式获取IP地址

    例:import retest= '$MYNETACT: 0,1,"10.10.0.9"'pattern =re.compile(r'"(\d+\.\d+\.\d+\.\ ...

  7. Prometheus 监控之 Blackbox_exporter黑盒监测

    Prometheus 监控之 Blackbox_exporter黑盒监测 1.blackbox_exporter概述 1.1 Blackbox_exporter 应用场景 2.blackbox_exp ...

  8. Mycat安装并实现mysql读写分离,分库分表

    Mycat安装并实现mysql读写分离,分库分表 一.安装Mycat 1.1 创建文件夹 1.2 下载 二.mycat具体配置 2.1 server.xml 2.2 schema.xml 2.3 se ...

  9. Linux环境ZooKeeper安装配置及使用

    Linux环境ZooKeeper安装配置及使用 一.ZooKeeper 1.1 zookeeper作用 1.2 zookeeper角色 1.3 zookeeper功能 二.集群规划 三.安装流程 (1 ...

  10. Dos命令思维导图

    通过思维导图的方式,总结常用Dos命令. 各种思维导图下载地址