【状压DP】SCOI2005-洛谷P1896-互不侵犯 (状压例题)

标签(空格分隔): 状压DP


好久没写博客了,真的爽(误)

题目:

在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案。国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子。

输入格式

只有一行,包含两个数N,K ( 1 <=N <=9, 0 <= K <= N * N)

输出格式

所得的方案数

输入

3 2

输出

16

思路:

状压的入门题,做此题前建议先行做玉米地那道例题。这道题与玉米地的区别在于状态多了一维(为什么多一维:1.玉米地那道题可以理解为国王只要可以就能无限放 2.玉米地要求的是最大放置个数,这道题求得是方案数),但这就已经有点麻烦了。

设定f[i][j][k],表示第i行状态为j时总共放了k个国王(举个例子:f[2][10100(二进制)][b[10100(二进制)]表示第2行状态为10100(第2行第3列和第5列放国王)的方案数)。

预处理:

    int Lowbit(int x){return x & -x;};
-----------------------------------------------------------------------------
int maxs=1<<n;//所有可能的二进制
for(int i=0;i<maxs;i++){
if(!((i<<1)&i)){//正左正右不能放国王
a[++ans]=i;//a[ans]表示第ans个状态的十进制
for(int s=i;s;s-=Lowbit(s)){
b[ans]++;//表示第ans个状态放了多少个国王(1的个数)
}
}
}
for(int i=1;i<=ans;i++){//预处理第一行的状态
if(b[i]<=m)f[1][i][b[i]]=1;//能放就放
}

主代码

	for(int i=2;i<=n;i++){
for(int j=1;j<=ans;j++){//枚举这一行的每一个状态
for(int k=1;k<=ans;k++){//枚举上一行的每一个状态
if((a[j]&a[k])||((a[j]<<1)&a[k])||(a[k]&(a[j]>>1)))continue;//正上、左上、右上都不能放
//预处理的时候已经把正左正右处理了
for(int s=1;s<=m;s++){//枚举已有的国王数量
if(b[j]+s<=m)f[i][j][b[j]+s]+=f[i-1][k][s];//能放就放,再把方案数相加
}
}
}
}

输出

for(int i=1;i<=n;i++){
for(int j=1;j<=ans;j++){
sum+=f[i][j][m];
}
}
cout<<sum;

OVER

【状压DP】SCOI2005-洛谷P1896-互不侵犯 (状压例题)的更多相关文章

  1. 状压DP【洛谷P1896】 [SCOI2005]互不侵犯

    P1896 [SCOI2005]互不侵犯 题目描述 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子 ...

  2. 状压DP概念 及例题(洛谷 P1896 互不侵犯)

    状压DP 就是状态压缩DP.所谓状态压缩,就是将一些复杂的状态压缩起来,一般来说是压缩为一个二进制数,用01来表示某一元素的状态. 比如一排灯泡(5个) 我们可以用一串二进制01串来表示他们的状态 1 ...

  3. 洛谷 P1896 互不侵犯King

    P1896 [SCOI2005]互不侵犯King 题目描述 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共 ...

  4. 洛谷P1896 互不侵犯

    又是一道状压DP求方案数的题... 多了一个放k个的限制,于是我们把数组多开一维. f[i][j][k]表示前i行放了j个,第i行状态为k的方案数. 然后老套路DFS转移,这次要多记录一个cnt表示上 ...

  5. 状压DP 【洛谷P3694】 邦邦的大合唱站队

    [洛谷P3694] 邦邦的大合唱站队 题目背景 BanG Dream!里的所有偶像乐队要一起大合唱,不过在排队上出了一些问题. 题目描述 N个偶像排成一列,他们来自M个不同的乐队.每个团队至少有一个偶 ...

  6. NOI P1896 互不侵犯 状压DP

    题目描述 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子. 注:数据有加强(2018/4/25) ...

  7. 最短路+状压DP【洛谷P3489】 [POI2009]WIE-Hexer

    P3489 [POI2009]WIE-Hexer 大陆上有n个村庄,m条双向道路,p种怪物,k个铁匠,每个铁匠会居住在一个村庄里,你到了那个村庄后可以让他给你打造剑,每个铁匠打造的剑都可以对付一些特定 ...

  8. 状压DP【洛谷P1879】 [USACO06NOV]玉米田Corn Fields

    P1879 [USACO06NOV]玉米田Corn Fields 农场主John新买了一块长方形的新牧场,这块牧场被划分成M行N列(1 ≤ M ≤ 12; 1 ≤ N ≤ 12),每一格都是一块正方形 ...

  9. 【题解】洛谷P1896 [SCOI2005] 互不侵犯(状压DP)

    洛谷P1896:https://www.luogu.org/problemnew/show/P1896 前言 这是一道状压DP的经典题 原来已经做过了 但是快要NOIP 复习一波 关于一些位运算的知识 ...

随机推荐

  1. 疫情期间我是如何拿到20k的offer,2020年php面试题汇总

    推荐视频:面试10家公司,收获9个offer,2020年PHP 面试问题 第一阶段1-2年 我认为1-2年对于PHP程序员来说是第一个门槛,这一阶段菜鸟正式从理论迈向企业级开发.我们知道如何使用工具. ...

  2. 容器技术之Docker私有镜像仓库harbor

    前文我们聊到了docker的私有镜像仓库docker-distribution的搭建和简单的使用,回顾请参考https://www.cnblogs.com/qiuhom-1874/p/13058338 ...

  3. 04-Python基础3

    本节内容 迭代器&生成器 装饰器 Json & pickle 数据序列化 软件目录结构规范 作业:ATM项目开发 1.列表生成式,迭代器&生成器 列表生成式 孩子,我现在有个需 ...

  4. [原创][开源] SunnyUI.Net 安装

    SunnyUI.Net, 基于 C# .Net WinForm 开源控件库.工具类库.扩展类库.多页面开发框架 Blog: https://www.cnblogs.com/yhuse Gitee: h ...

  5. 关于Integer类的值使用==比较

    题记:前几天面试Java基础给来了个面试题Integer a=100,b=100;System.out.println(a==b); 当时回答是true,后来面试官又来了一个Integer a=200 ...

  6. 菜鸟教程—SQL测验

    SQL 测验 结果:17/3 1. SQL 指的是? 你的回答: Structured Question Language 回答错误! 正确答案:Structured Query Language 2 ...

  7. 关联函数-web_reg_save_param

    int web_reg_save_param(const char *ParamName,<List of Attributes>,LAST) 返回值:成功时返回LR_PASS,失败时返回 ...

  8. BUAA_OO_2020_Unit4_总结博客

    BUAA_OO_2020_Unit4_总结 2020年春季学期第十六周,OO第四单元即最终章落下帷幕,本单元是利用Java进行UML类图的解析,完成对类图.顺序图.状态图的内部查询操作与简单的规则判断 ...

  9. 关于margin外边距合并的问题

    一 .兄弟元素margin外边距合并演示   当两个垂直方向相邻的兄弟元素都为常规流块盒,他们之间垂直方向的外边距不是两者之和,而是取两者中的最大值.这种现象被称为相邻的兄弟元素垂直方向外边距合并. ...

  10. C# 什么是泛型 ?以及对泛型各方面的一些知识点的整理

    1.1 理解什么是泛型 在.NET 2.0,可以成为革命性壮举的, 就是引入了激动人心的特性——泛型..NET泛型是CLR和高级语言共同支持的一种全新的结构,实现了一种将类型抽象化的通用处理方式.在泛 ...