CF1465-C. Peaceful Rooks

预备小知识:

Rook(国际象棋中的车)。

国际象棋中的棋子。每人有2个,他只能直走,不能斜走,除王车易位外不能越子。

—— 来自《百度百科》


题意:

题目给出一个\(n\times n\)的棋盘,棋盘中有\(m(m<n)\)个车。最一开始任意两个车都不能打到对方(即都不在同一行或同一列)。

每一个回合你可以让一个车水平或垂直移动任意距离,但是要求车移动后不能让其他车可以打到它。现在问你至少多少回合之后,所有车能够都移动到主对角线上。


思路:

正常情况下每个车直接移动到它对应的主对角线上肯定是最优解。

但是大部分情况下车要移动到它对应的主对角线上的时候会发现那个位置要么所在行有车,要么所在列有车,那么所在行或列上的那个棋子就要先移动到那个棋子对应的主对角线上,但是又发现那个棋子对应主对角线上的位置的行或列有车,那么就要... ...这种最终会有两种情况发生:

一种是最终的棋子对应的主对角线位置所在行或列上都没有棋子,那么这时候它以及它之前的所有棋子都可以一步到达主对角线上;

另一种是最终的棋子对应的主对角线位置所在行或列上有棋子,并且这个棋子是第一个棋子,即形成了这样的环:\(a->b->c->d->a\),那么这时候只要也只有破坏这个环之后,才能把每个棋子移动到主对角线位置。破坏的方法其实很简单,只要把环中的某一个棋子移动到一个所在行所在列没有其他棋子的位置就可以破坏这个环,等其他棋子都移动到主对角线上再把这个棋子移动到它对应的主对角线上即可。这样第二种情况移动的总次数就是环中所有棋子的个数加一(破坏环的时候多移动了一步)。

判断环就用并查集就可以(本蒟蒻一开始还用dfs。。),每个车\((x, y)\)相当于一个边连接了点\(x\)和点\(y\),答案就是不在对角线上车的数量加上环的数量。


AC代码:

#include <cstdio>
#include <cstring>
#include <iostream> const int maxn = 100005; int father[maxn]; int Find(int x) {
return father[x] == x ? x : father[x] = Find (father[x]);
} void Union(int u, int v) {
if (Find(u) != Find(v)) {
father[Find(u)] = Find(v);
}
} int main() {
int T, n, m;
scanf("%d", &T);
while (T--) {
scanf("%d %d", &n, &m);
for (int i = 0; i <= n; i++) {
father[i] = i;
}
int u, v;
int ans = 0;
for (int i = 0; i < m; i++) {
scanf("%d %d", &u, &v);
if (u == v) {
continue;
} else if (Find(u) == Find(v)) {
ans += 2;
} else {
ans += 1;
Union(u, v);
}
}
printf("%d\n", ans);
} return 0;
}

CF1465-C. Peaceful Rooks的更多相关文章

  1. Codeforces Round #692 (Div. 2, based on Technocup 2021 Elimination Round 3) C. Peaceful Rooks (思维,dsu找环)

    题意:一个棋盘上有一些"车",现在要让这些"车"跑到左倾斜的对角线上,每次可以移动一个棋子,但是棋盘的任意时刻都不能出现一个"车"能吃另一个 ...

  2. Codeforces Round #692 (Div. 2, based on Technocup 2021 Elimination Round 3)

    A.In-game Chat 题目:就是从后面数连着的'('的个数是不是严格比剩下的字符多 思路:水题,直接从后往前遍历即可 代码: #include<iostream> #include ...

  3. UVA - 11134 Fabled Rooks[贪心 问题分解]

    UVA - 11134 Fabled Rooks We would like to place n rooks, 1 ≤ n ≤ 5000, on a n × n board subject to t ...

  4. (light OJ 1005) Rooks dp

    http://www.lightoj.com/volume_showproblem.php?problem=1005        PDF (English) Statistics Forum Tim ...

  5. 01_传说中的车(Fabled Rooks UVa 11134 贪心问题)

    问题来源:刘汝佳<算法竞赛入门经典--训练指南> P81: 问题描述:你的任务是在n*n(1<=n<=5000)的棋盘上放n辆车,使得任意两辆车不相互攻击,且第i辆车在一个给定 ...

  6. uva 11134 fabled rooks (贪心)——yhx

    We would like to place n rooks, 1 n 5000, on a n nboard subject to the following restrictions• The i ...

  7. L - Fabled Rooks(中途相遇法和贪心)

    Problem F: Fabled Rooks We would like to place n rooks, 1 ≤ n ≤ 5000, on a n×n board subject to the ...

  8. UVA 11134 - Fabled Rooks(贪心+优先队列)

    We would like to place  n  rooks, 1 ≤  n  ≤ 5000, on a  n×n  board subject to the following restrict ...

  9. 贪心 uvaoj 11134 Fabled Rooks

    Problem F: Fabled Rooks We would like to place n rooks, 1 ≤ n ≤ 5000, on a n×n board subject to the ...

随机推荐

  1. 【Linux】ssh设置了密钥,但ssh登陆的时候还需要输入密码

    ------------------------------------------------------------------------------------------------- | ...

  2. 【ORA】ORA-00371: not enough shared pool memory

    今天rac中有一个节点asm实例起不来包了ora-000371的错误,错误贴在下面: [oracle@rac2 dbs]$ srvctl start asm -n rac2 PRKS-1009 : F ...

  3. JVM 判断对象已死,实践验证GC回收

    作者:小傅哥 博客:https://bugstack.cn 沉淀.分享.成长,让自己和他人都能有所收获! 一.前言 提升自身价值有多重要? 经过了风风雨雨,看过了男男女女.时间经过的岁月就没有永恒不变 ...

  4. Spring Validation 验证

    基本配置 1.pom引入maven依赖 <dependency> <groupId>javax.validation</groupId> <artifactI ...

  5. postgres模糊匹配大杀器

    ArteryBase-模糊匹配大杀器 问题背景 随着pg越来越强大,abase目前已经升级到5.0(postgresql10.4),目前abase5.0继承了全文检索插件(zhparser),使用全文 ...

  6. git 基本命令和操作

    设置全局用户名+密码 $ git config --global user.name 'runoob' $ git config --global user.email test@runoob.com ...

  7. 并发条件队列之Condition 精讲

    1. 条件队列的意义 Condition将Object监控器方法( wait , notify和notifyAll )分解为不同的对象,从而通过与任意Lock实现结合使用,从而使每个对象具有多个等待集 ...

  8. Correct the classpath of your application so that it contains a single, compatible version of org.thymeleaf.spring5.SpringTemplateEngine

    Error starting ApplicationContext. To display the conditions report re-run your application with 'de ...

  9. 抛弃 .NET 经典错误:object null reference , 使用安全扩展方法? 希望对大家有帮助---Bitter.Frame 引用类型的安全转换

    还是一样,我不喜欢长篇大论,除非关乎我设计思想领域的文章.大家过来看,都是想节省时间,能用白话表达的内容,绝不长篇大论.能直接上核心代码的,绝不上混淆代码. 长期从事 .NET 工作的人都知道..NE ...

  10. Linux 文件搜索神器 find 实战详解,建议收藏!

    大家好,我是肖邦,这是我的第 10 篇原创文章. 在 Linux 系统使用中,作为一个管理员,我希望能查找系统中所有的大小超过 200M 文件,查看近 7 天系统中哪些文件被修改过,找出所有子目录中的 ...