poj2411 Mondriaan's Dream (用1*2的矩形铺)
Description
of filling a large rectangle with small rectangles of width 2 and height 1 in varying ways.

Expert as he was in this material, he saw at a glance that he'll need a computer to calculate the number of ways to fill the large rectangle whose dimensions were integer values, as well. Help him, so that his dream won't turn into a nightmare!
Input
Output
For each test case, output the number of different ways the given rectangle can be filled with small rectangles of size 2 times 1. Assume the given large rectangle is oriented, i.e. count symmetricaltilings multiple times.
Sample Input
1 2
1 3
1 4
2 2
2 3
2 4
2 11
4 11
0 0
Sample Output
1
0
1
2
3
5
144
51205
这题可以用状压dp做,用二进制表示每一行的状态,横着的11表示横放,竖着的01表示竖放,然后先初始化第一行的可行状态,因为第一行前没有空行,所以转化后的二进制中如果有奇数个1连一起一定是不可行状态.但对于大于1的行来说,因为可能会有前面一行的矩形竖着放,所以奇数个1连在一起可能是可行的,所以需要另外的判断。可以发现,状态转移过程中,大于1的每一行都要满足两个条件,一个是行内不能有空余的位置(可以用|来实现,很神奇啊),另一个是如果去掉前一行竖着放的矩形遗留在当前行的1,当前状态一定也是可行状态(可以用&来实现,动手画一下),这样就可以把动态转移方程写出来了,我们记dp[i][state]为第i行state状态下的总方案数,那么dp[i][state]=dp[i][state]+dp[i-1][state'],所以最后要求的就是dp[n][(1<<m)-1].
#include<stdio.h>
#include<string.h>
#define ll long long
int kexing[5000],n,m;
ll dp[15][5000];
int panduan(int x)
{
int i,j,tot=0;
while(x>0){
if(x%2==1){
tot++;x=x/2;
}
else{
if(tot%2==1)return 0;
tot=0;x=x/2;
}
}
if(tot%2==1)return 0;
else return 1;
}
int check(int x,int y)
{
int i,j,t=(1<<m)-1;
if(!( (x|y)==t ) )return 0;
return kexing[x&y];
}
int main()
{
int i,j,k;
while(scanf("%d%d",&n,&m)!=EOF)
{
if(n==0 && m==0)break;
memset(dp,0,sizeof(dp));
for(i=0;i<(1<<m);i++){
if(panduan(i)){
kexing[i]=1;dp[1][i]=1;
}
else kexing[i]=0;
}
for(i=2;i<=n;i++){
for(j=0;j<(1<<m);j++){
for(k=0;k<(1<<m);k++){
if(check(j,k)){
dp[i][j]=dp[i][j]+dp[i-1][k];
}
}
}
}
printf("%lld\n",dp[n][(1<<m)-1]);
}
return 0;
}
poj2411 Mondriaan's Dream (用1*2的矩形铺)的更多相关文章
- POJ2411 Mondriaan's Dream(状态压缩)
Mondriaan's Dream Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 15295 Accepted: 882 ...
- poj2411 Mondriaan's Dream【状压DP】
Mondriaan's Dream Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 20822 Accepted: 117 ...
- [Poj2411]Mondriaan's Dream(状压dp)(插头dp)
Mondriaan's Dream Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 18096 Accepted: 103 ...
- POJ1185 炮兵阵地 和 POJ2411 Mondriaan's Dream
炮兵阵地 Language:Default 炮兵阵地 Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 34008 Accepted ...
- poj2411 Mondriaan's Dream (轮廓线dp、状压dp)
Mondriaan's Dream Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 17203 Accepted: 991 ...
- [poj2411] Mondriaan's Dream (状压DP)
状压DP Description Squares and rectangles fascinated the famous Dutch painter Piet Mondriaan. One nigh ...
- POJ2411 Mondriaan's Dream
Description Squares and rectangles fascinated the famous Dutch painter Piet Mondriaan. One night, af ...
- POJ2411 Mondriaan's Dream 轮廓线dp
第一道轮廓线dp,因为不会轮廓线dp我们在南京区域赛的时候没有拿到银,可见知识点的欠缺是我薄弱的环节. 题目就是要你用1*2的多米诺骨排填充一个大小n*m(n,m<=11)的棋盘,问填满它有多少 ...
- POJ2411 - Mondriaan's Dream(状态压缩DP)
题目大意 给定一个N*M大小的地板,要求你用1*2大小的砖块把地板铺满,问你有多少种方案? 题解 刚开始时看的是挑战程序设计竞赛上的关于铺砖块问题的讲解,研究一两天楞是没明白它代码是怎么写的,智商捉急 ...
随机推荐
- Linux学习笔记 | 配置Samba
Samba是在Linux和UNIX系统上实现SMB协议的一个免费软件,由服务器及客户端程序构成.SMB(Server Messages Block,信息服务块)是一种在局域网上共享文件和打印机的一种通 ...
- 总结下MySql优化。防止数据灾难的发生。
在PHP开发中用到的数据库中MySql是最牛逼的数据库,没有之一--^_^ 相比Sqlite个人最喜欢的特性就是"支持多线程,充分利用 CPU 资源",不像Sqlite那样,动不动 ...
- 【Sed】使用sed删除文件指定行的内容
sed多看帮助文档,受益良多 sed -i '$d' filename 例如删除 /etc/profile的最后一行 cat -n /etc/profile ... 101 export PA ...
- 【MySQL】一台服务器上搭建两个mysql节点
环境: CentOS 6.8 memory:1G Mysql 5.7 二进制安装包 1.安装相关的环境包 yum -y install gcc glibc libaio libstdc++ libs ...
- C# url的编码解码,xml和json的序列化和反序列化
参考中国慕课网dot net web编程应用程序实践 using System; using System.Collections.Generic; using System.IO; using Sy ...
- mysql:如何解决数据修改冲突(事务+行级锁的实际运用)
摘要:最近做一个接诊需求遇到一个问题,假设一个订单咨询超过3次就不能再接诊,但如果两个医生同时对该订单进行咨询,查数据库的时候查到的接诊次数都是2次,那两个医生都能接诊,所谓接诊可以理解为更新了接诊次 ...
- 利用vbs隐藏dos窗口
方法一: option explicitdim wshshellset wshshell=wscript.createobject("wscript.shell")wshshell ...
- Jenkins 部署打包文件 并通过SSH上传到 linux服务器
编译 发布 打包成zip文件 dotnet clean : dotnet的命令清除解决方案 dotnet build : dotnet的命令重新生成 dotnet publish .\Hy.MyDem ...
- mysql半同步复制跟无损半同步区别
mysql半同步复制跟无损半同步复制的区别: 无损复制其实就是对semi sync增加了rpl_semi_sync_master_wait_point参数,来控制半同步模式下主库在返回给会话事务成功之 ...
- There are only two hard things in Computer Science: cache invalidation and naming things.
TwoHardThings https://martinfowler.com/bliki/TwoHardThings.html https://github.com/cch123/golang-not ...