Description

Squares and rectangles fascinated the famous Dutch painter Piet Mondriaan. One night, after producing the drawings in his 'toilet series' (where he had to use his toilet paper to draw on, for all of his paper was filled with squares and rectangles), he dreamt
of filling a large rectangle with small rectangles of width 2 and height 1 in varying ways. 



Expert as he was in this material, he saw at a glance that he'll need a computer to calculate the number of ways to fill the large rectangle whose dimensions were integer values, as well. Help him, so that his dream won't turn into a nightmare!

Input

The input contains several test cases. Each test case is made up of two integer numbers: the height h and the width w of the large rectangle. Input is terminated by h=w=0. Otherwise, 1<=h,w<=11.

Output

For each test case, output the number of different ways the given rectangle can be filled with small rectangles of size 2 times 1. Assume the given large rectangle is oriented, i.e. count symmetrical
tilings multiple times.

Sample Input

1 2
1 3
1 4
2 2
2 3
2 4
2 11
4 11
0 0

Sample Output

1
0
1
2
3
5
144

51205

这题可以用状压dp做,用二进制表示每一行的状态,横着的11表示横放,竖着的01表示竖放,然后先初始化第一行的可行状态,因为第一行前没有空行,所以转化后的二进制中如果有奇数个1连一起一定是不可行状态.但对于大于1的行来说,因为可能会有前面一行的矩形竖着放,所以奇数个1连在一起可能是可行的,所以需要另外的判断。可以发现,状态转移过程中,大于1的每一行都要满足两个条件,一个是行内不能有空余的位置(可以用|来实现,很神奇啊),另一个是如果去掉前一行竖着放的矩形遗留在当前行的1,当前状态一定也是可行状态(可以用&来实现,动手画一下),这样就可以把动态转移方程写出来了,我们记dp[i][state]为第i行state状态下的总方案数,那么dp[i][state]=dp[i][state]+dp[i-1][state'],所以最后要求的就是dp[n][(1<<m)-1].

#include<stdio.h>
#include<string.h>
#define ll long long
int kexing[5000],n,m;
ll dp[15][5000];
int panduan(int x)
{
int i,j,tot=0;
while(x>0){
if(x%2==1){
tot++;x=x/2;
}
else{
if(tot%2==1)return 0;
tot=0;x=x/2;
}
}
if(tot%2==1)return 0;
else return 1;
} int check(int x,int y)
{
int i,j,t=(1<<m)-1;
if(!( (x|y)==t ) )return 0;
return kexing[x&y];
} int main()
{
int i,j,k;
while(scanf("%d%d",&n,&m)!=EOF)
{
if(n==0 && m==0)break;
memset(dp,0,sizeof(dp));
for(i=0;i<(1<<m);i++){
if(panduan(i)){
kexing[i]=1;dp[1][i]=1;
}
else kexing[i]=0;
}
for(i=2;i<=n;i++){
for(j=0;j<(1<<m);j++){
for(k=0;k<(1<<m);k++){
if(check(j,k)){
dp[i][j]=dp[i][j]+dp[i-1][k];
}
}
}
}
printf("%lld\n",dp[n][(1<<m)-1]);
}
return 0;
}

poj2411 Mondriaan's Dream (用1*2的矩形铺)的更多相关文章

  1. POJ2411 Mondriaan's Dream(状态压缩)

    Mondriaan's Dream Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 15295   Accepted: 882 ...

  2. poj2411 Mondriaan's Dream【状压DP】

    Mondriaan's Dream Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 20822   Accepted: 117 ...

  3. [Poj2411]Mondriaan's Dream(状压dp)(插头dp)

    Mondriaan's Dream Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 18096   Accepted: 103 ...

  4. POJ1185 炮兵阵地 和 POJ2411 Mondriaan's Dream

    炮兵阵地 Language:Default 炮兵阵地 Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 34008 Accepted ...

  5. poj2411 Mondriaan's Dream (轮廓线dp、状压dp)

    Mondriaan's Dream Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 17203   Accepted: 991 ...

  6. [poj2411] Mondriaan's Dream (状压DP)

    状压DP Description Squares and rectangles fascinated the famous Dutch painter Piet Mondriaan. One nigh ...

  7. POJ2411 Mondriaan's Dream

    Description Squares and rectangles fascinated the famous Dutch painter Piet Mondriaan. One night, af ...

  8. POJ2411 Mondriaan's Dream 轮廓线dp

    第一道轮廓线dp,因为不会轮廓线dp我们在南京区域赛的时候没有拿到银,可见知识点的欠缺是我薄弱的环节. 题目就是要你用1*2的多米诺骨排填充一个大小n*m(n,m<=11)的棋盘,问填满它有多少 ...

  9. POJ2411 - Mondriaan's Dream(状态压缩DP)

    题目大意 给定一个N*M大小的地板,要求你用1*2大小的砖块把地板铺满,问你有多少种方案? 题解 刚开始时看的是挑战程序设计竞赛上的关于铺砖块问题的讲解,研究一两天楞是没明白它代码是怎么写的,智商捉急 ...

随机推荐

  1. Linux—curl命令讲解

    命令:curl 在Linux中curl是一个利用URL规则在命令行下工作的文件传输工具,可以说是一款很强大的http命令行工具.它支持文件的上传和下载,是综合传输工具,但按传统,习惯称url为下载工具 ...

  2. Ice框架介绍

    概述 Ice是一个开源的综合性RPC框架,以高性能和原生支持微服务的架构而著称.提供了很多可以直接使用的组件,如注册中心IceGrid,部署工具IcePatch2,防火墙穿透Glacier2,发布订阅 ...

  3. JD6621快速充电协议芯片,带有PPS 控制器的USB-PD3.0

    描述 JD6621是高度集成的USB供电(PD)控制器,支持USB PD 3.0 ,该USB PD 3.0 具有针对USBType-C下游接口(源)设计的可编程电源(PPS)规范.它监视CC引脚以检测 ...

  4. Vue使用Ref跨层级获取组件实例

    目录 Vue使用Ref跨层级获取组件实例 示例介绍 文档目录结构 安装vue-ref 根组件自定义方法[使用provide和inject] 分别说明各个页面 结果 Vue使用Ref跨层级获取组件实例 ...

  5. 一文告诉你Java日期时间API到底有多烂

    前言 你好,我是A哥(YourBatman). 好看的代码,千篇一律!难看的代码,卧槽卧槽~其实没有什么代码是"史上最烂"的,要有也只有"史上更烂". 日期是商 ...

  6. 前端面试之CSS常用的选择器!

    前端面试之CSS常用的选择器! 标签选择器 <style> /* <!-- 标签选择器 :写上标签名 -->*/ p { color: green; } div { color ...

  7. JavaScript中的构造函数和原型!

    JavaScript中的原型! 原型的内容是涉及到JavaScript中的构造函数的 每一个构造函数都有一个原型对象!prototype 他的作用是 共享方法!还可以扩展内置对象[对原来的内置对象进行 ...

  8. ubuntu14.04 LEMP(linux+nginx+mysql+php5)构建环境

    Install LEMP (Linux, Nginx, MySQL and PHP) Stack on Ubuntu Linux 14.04 LTS by VIVEK GITE on DECEMBER ...

  9. IDEA SSM后端框架入门

    SSM框架 如果对SSM一无所知,推荐先去看这本书,可以在微信读书上看. 知识点 控制器返回对象时,对象需要有getter,setter方法,才能自动转化为json数据类型. 一个服务管理者对应多个业 ...

  10. trust an HTTPS connection 安全协议 随机数 运输层安全协议 应用层安全协议 安全证书

    小结: 1.HTTPS存在不同于HTTP的默认端口及一个加密/身份验证层(在HTTP与TCP之间) HTTPS(全称:Hyper Text Transfer Protocol over Secure ...