[矩阵乘法]裴波拉契数列II
[
矩
阵
乘
法
]
裴
波
拉
契
数
列
I
I
[矩阵乘法]裴波拉契数列II
[矩阵乘法]裴波拉契数列II
Description
形如 1 1 2 3 5 8 13 21 34 55 89 144…的数列,求裴波拉契数列的第n项。
Input
n (1< n <2^31)
Output
一个数为裴波拉契数列的第n项mod 10000;
Sample Input
123456789
Sample Output
4514
题目解析
首先看题面,是斐波那契数列。首先想到递归,但考虑到N的值比较大,就想办法将时间复杂度降到
O
(
l
o
g
N
)
O(logN)
O(logN)以达到目的。
那么怎么将时间复杂度降下来呢?
我们将斐波那契数列的第
n
n
n项定义为
f
(
n
)
f(n)
f(n),然后考虑用矩阵乘法进行一个时间复杂度的优化
那么我们考虑矩阵
⊏
f
[
n
−
2
]
,
f
[
n
−
1
]
⊐
\sqsubset f[n - 2] , f[n - 1]\sqsupset
⊏f[n−2],f[n−1]⊐并利用斐波那契数列的递推关系来得到式子
⊏
f
[
n
]
,
f
[
n
−
1
]
⊐
=
⊏
f
[
n
−
2
]
+
f
[
n
−
1
]
,
f
[
n
−
1
]
⊐
\sqsubset f[n] , f[n - 1]\sqsupset = \sqsubset f[n - 2] + f[n - 1] , f[n - 1]\sqsupset
⊏f[n],f[n−1]⊐=⊏f[n−2]+f[n−1],f[n−1]⊐
然后可以构造出一个
2
∗
2
2 * 2
2∗2的矩阵
T
T
T
∣
0
1
1
1
∣
\begin{vmatrix} 0&1 \\ 1&1 \end{vmatrix}
∣∣∣∣0111∣∣∣∣
然后可以通过
f
[
1
]
,
f
[
2
]
∗
T
=
f
[
2
]
,
f
[
3
]
f[1] , f[2] * T = f[2] , f[3]
f[1],f[2]∗T=f[2],f[3]来实现代码了
Code
#include <cmath>
#include <cstdio>
#include <iostream>
using namespace std;
const int MOD = 10000;
int n;
struct matrix
{
int n, m;
int t[10][10];
}t1, t2, t3;
matrix operator *(matrix t, matrix r)
{
matrix c;
c.n = t.n, c.m = r.m;
for (int i = 1; i <= c.n; ++ i)
for (int j = 1; j <= c.m; ++ j)
c.t[i][j]=0;
for (int k = 1; k <= t.m; ++ k)
for (int i = 1; i <= t.n; ++ i)
for (int j = 1; j <= r.m; ++ j)
c.t[i][j] = (c.t[i][j] + t.t[i][k] * r.t[k][j] % MOD) % MOD;
return c;
}
void rt (int k)
{
if (k == 1)
{
t2 = t1;
return;
}
rt (k / 2);
t2 = t2 * t2;
if (k & 1) t2 = t2 * t1;
}
int main()
{
scanf ("%d",&n);
if (n == 1)
{
printf("1\n");
return 0;
}
t1.n = 2,t1.m = 2;
t1.t[1][1] = 0, t1.t[1][2] = 1, t1.t[2][1] = 1, t1.t[2][2] = 1;
rt (n - 1);
t3.n = 1,t3.m = 2;
t3.t[1][1] = 1,t3.t[1][2] = 1;
t3 = t3 * t2;
printf ("%d", t3.t[1][1]);
return 0;
}
[矩阵乘法]裴波拉契数列II的更多相关文章
- [矩阵乘法]裴波拉契数列III
[ 矩 阵 乘 法 ] 裴 波 拉 契 数 列 I I I [矩阵乘法]裴波拉契数列III [矩阵乘法]裴波拉契数列III Description 求数列f[n]=f[n-1]+f[n-2]+1的第N ...
- [矩阵乘法]斐波那契数列IV
[ 矩 阵 乘 法 ] 裴 波 拉 契 数 列 I V [矩阵乘法]裴波拉契数列IV [矩阵乘法]裴波拉契数列IV Description 求数列f[n]=f[n-2]+f[n-1]+n+1的第N项, ...
- 浅谈矩阵加速——以时间复杂度为O(log n)的算法实现裴波那契数列第n项及前n之和使用矩阵加速法的优化求法
首先请连矩阵乘法乘法都还没有了解的同学简单看一下这篇博客: https://blog.csdn.net/weixin_44049566/article/details/88945949 首先直接暴力求 ...
- 斐波拉契数列加强版——时间复杂度O(1),空间复杂度O(1)
对于斐波拉契经典问题,我们都非常熟悉,通过递推公式F(n) = F(n - ) + F(n - ),我们可以在线性时间内求出第n项F(n),现在考虑斐波拉契的加强版,我们要求的项数n的范围为int范围 ...
- 关于斐波拉契数列(Fibonacci)
斐波那契数列指的是这样一个数列 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,377,610,987,1597,2584,4181,6765,10 ...
- 剑指offer-第二章算法之斐波拉契数列(青蛙跳台阶)
递归与循环 递归:在一个函数的内部调用这个函数. 本质:把一个问题分解为两个,或者多个小问题(多个小问题相互重叠的部分,会存在重复的计算) 优点:简洁,易于实现. 缺点:时间和空间消耗严重,如果递归调 ...
- 剑指offer三: 斐波拉契数列
斐波拉契数列是指这样一个数列: F(1)=1; F(2)=1; F(n)=F(n-1)+F(n); public class Solution { public int Fibonacci(int n ...
- e8_4输出菲波拉契数列的前10项
program fbnq;{输出菲波拉契数列的前10项} var a:..] of integer; i:integer; begin a[]:=; a[]:=; do a[i]:=a[i-]+a[i ...
- 剑指offer-面试题9.斐波拉契数列
题目一:写一个函数,输入n,求斐波拉契数列的第n项. 斐波拉契数列的定义如下: { n=; f(n)={ n=; { f(n-)+f(n-) n>; 斐波拉契问题很明显我们会想到用递归来解决: ...
随机推荐
- 用WPF写了个处理视频,音频,图片的工具
处理工具依赖ffmpeg,感兴趣可以看下Github上的源码 下载地址也在Github上
- subline3 如何设置es6高亮
步骤: 1.操作Ctrl+Shift+P , 然后在弹出的框内输入Package Control: in,2.选择Package Control: install package,3.等待再次弹出输入 ...
- 2021-2-20:请你说说分布式系统 BASE 理论是什么?
BASE 理论是由 Dan Pritchett 在 ACM 上发表的一篇论文中提出的理论.是在 CAP 理论基础上提出的一种更实际的理论指导,和 PACELC 理论是有些相近的地方的. BASE 是指 ...
- C# NOPI 项目实战(经典)(可下载项目源码)
1 -.首先说明下项目目的: 之前我有写过一篇 "NPOI操作EXCEL" 这篇文章主要介绍了如何安装NPOI,以及NPOI具体如何使用,并且用具体实例介绍了excel导入到da ...
- Flex实现左右布局
html <div class="business-content-1"> <div class="item"> 111 </di ...
- JVM线上故障初步简易排查
线上故障主要包括cpu 磁盘 内存 网络等问题 依次排查 1.cpu 1) 先用ps找到进程pid 2) top -H -p pid 找到cpu占用高的线程 3)printf '%x\n' pid 获 ...
- AdoptOpenJDK是什么?
要搞清楚AdoptOpenJDK是什么,前提条件是我们需要知道JDK是什么,OpenJDK是什么.明白了JDK和OpenJDK的关系,会容易明白什么是AdoptOpenJDK. JDK是什么? 首先, ...
- Django Admin 后台Admin继承UserAdmin增加用户密码不显示明文和用户登录不了的解决方法
Django后台Admin继承UserAdmin增加用户不显示明文方法 1.在 models.py 中用户表 # 导包规范-1.Python标准模块 from django.db import mod ...
- postman工具的用法
1.postman发送json字符串的方法 1)设置header Content-Type application/json 2)指定发送类型和json数据
- IDEA总结
1. 什么是idea? idea是Java开发软件 2. IDEA下载 https://www.jetbrains.com/idea/download/download-thanks.html?pla ...