HDU3625 Examining the Rooms
@(HDU)[Stirling數]
Problem Description
A murder happened in the hotel. As the best detective in the town, you should examine all the N rooms of the hotel immediately. However, all the doors of the rooms are locked, and the keys are just locked in the rooms, what a trap! You know that there is exactly one key in each room, and all the possible distributions are of equal possibility. For example, if N = 3, there are 6 possible distributions, the possibility of each is 1/6. For convenience, we number the rooms from 1 to N, and the key for Room 1 is numbered Key 1, the key for Room 2 is Key 2, etc.
To examine all the rooms, you have to destroy some doors by force. But you don’t want to destroy too many, so you take the following strategy: At first, you have no keys in hand, so you randomly destroy a locked door, get into the room, examine it and fetch the key in it. Then maybe you can open another room with the new key, examine it and get the second key. Repeat this until you can’t open any new rooms. If there are still rooms un-examined, you have to randomly pick another unopened door to destroy by force, then repeat the procedure above, until all the rooms are examined.
Now you are only allowed to destroy at most K doors by force. What’s more, there lives a Very Important Person in Room 1. You are not allowed to destroy the doors of Room 1, that is, the only way to examine Room 1 is opening it with the corresponding key. You want to know what is the possibility of that you can examine all the rooms finally.
Input
The first line of the input contains an integer T (T ≤ 200), indicating the number of test cases. Then T cases follow. Each case contains a line with two numbers N and K. (1 < N ≤ 20, 1 ≤ K < N)
Output
Output one line for each case, indicating the corresponding possibility. Four digits after decimal point are preserved by rounding.
Sample Input
3
3 1
3 2
4 2
Sample Output
0.3333
0.6667
0.6250
Hint
Sample Explanation
When N = 3, there are 6 possible distributions of keys:
Room 1 Room 2 Room 3 Destroy Times
1 Key 1 Key 2 Key 3 Impossible
2 Key 1 Key 3 Key 2 Impossible
3 Key 2 Key 1 Key 3 Two
4 Key 3 Key 2 Key 1 Two
5 Key 2 Key 3 Key 1 One
6 Key 3 Key 1 Key 2 One
In the first two distributions, because Key 1 is locked in Room 1 itself and you can’t destroy Room 1, it is impossible to open Room 1.
In the third and forth distributions, you have to destroy Room 2 and 3 both. In the last two distributions, you only need to destroy one of Room 2 or Room
Source
2010 Asia Regional Tianjin Site —— Online Contest
Solution
題意:
n个房间对应n把钥匙, 每个房间的钥匙随机放在某个房间内, 概率相同。
有K次炸门的机会,求能进入所有房间的概率
一号门不给你炸
--by ZWL
實際上這題就是第一類Stirling數的模板應用.
不妨設\(key_i\)表示第\(i\)個房間內放的鑰匙是哪把, 則對於這樣一組\(i\)和\(key_i\), 可看作在一個有向圖中, 點\(i\)向點\(key_i\)連出一條有向邊. 當對這個有向圖連邊完畢后, 就會發現, 每個點的出度和入度都為\(1\). 連邊組成一個或多個環. 而在一個環中, 只要有一個房間可以通過任何方式進入, 則其他房間都可以進入了.
由於可以炸開門的次數為\(k\), 因此要求這個圖中環的個數不超過\(k\). 同時由於\(1\)號房間的門不能被炸開, 因此\(1\)不能單獨在一個環中. 所以滿足條件的方案數為: $$qua = \sum_{i = 1}^n \left( \left[ \begin{array}{} n \ i \end{array}{} \right] - \left[ \begin{array}{} n - 1 \ i - 1 \end{array}{} \right] \right)$$
代碼附上:
#include<cstdio>
#include<cctype>
using namespace std;
inline int read()
{
int x = 0, flag = 1;
char c;
while(! isdigit(c = getchar()))
if(c == '-')
flag *= - 1;
while(isdigit(c))
x = x * 10 + c - '0', c = getchar();
return x * flag;
}
const int N = 1 << 5;
long long f[N][N];
long long fac[N];
int main()
{
fac[0] = 1;
for(int i = 1; i < N; i ++)
fac[i] = fac[i - 1] * i;
f[0][0] = 1;
for(int i = 1; i < N; i ++)
f[0][i] = 0;
for(int i = 1; i < N; i ++)
{
f[i][0] = (long long)0;
for(int j = 1; j <= i; j ++)
f[i][j] = f[i - 1][j - 1] + (long long)(i - 1) * f[i - 1][j];
}
int T = read();
for(; T --; )
{
int n = read(), k = read();
long long qua = 0;
for(int i = 1; i <= k; i ++)
qua += f[n][i] - f[n - 1][i - 1];
printf("%.4lf\n", (double)qua / fac[n]);
}
}
HDU3625 Examining the Rooms的更多相关文章
- 【组合数学:第一类斯特林数】【HDU3625】Examining the Rooms
Examining the Rooms Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Othe ...
- Examining the Rooms(dp,斯特灵数)
Examining the Rooms Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Othe ...
- [HDU 3625]Examining the Rooms (第一类斯特林数)
[HDU 3625]Examining the Rooms (第一类斯特林数) 题面 有n个房间,每个房间有一个钥匙,钥匙等概率的出现在n个房间内,每个房间中只会出现且仅出现一个钥匙.你能炸开门k次, ...
- hdu Examining the Rooms
这道题的知识点第一次听说 ,就是应用斯特林数.题目的意思是给你房间数N,和最多能破门的个数,让你求能全部把房间打开的概率! a[i][j]=a[i-1][j-1]+(i-1)*a[i-1][j]; # ...
- HDU 3625 Examining the Rooms
题目大意:有n个房间,n!个钥匙,在房间中,最多可以破k扇门,然后得到其中的钥匙,去开其它的门,但是第一扇门不可以破开,求可以打开所有门的概率. 题解:首先,建立这样的一个模型,题目相当于给出一个图, ...
- HDU 3625 Examining the Rooms:第一类stirling数
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3625 题意: 有n个房间,每个房间里放着一把钥匙,对应能开1到n号房间的门. 除了1号门,你可以踹开任 ...
- HDU 3625 Examining the Rooms【第一类斯特灵数】
<题目链接> <转载于 >>> > 题目大意:有n个锁着的房间和对应n扇门的n把钥匙,每个房间内有一把钥匙.你可以破坏一扇门,取出其中的钥匙,然后用取出钥匙打 ...
- Examining the Rooms - 第一类斯特灵数
---恢复内容开始--- 2017-08-10 20:32:37 writer:pprp 题意如下: Recently in Teddy's hometown there is a competiti ...
- hdu 3625 Examining the Rooms——第一类斯特林数
题目:http://acm.hdu.edu.cn/showproblem.php?pid=3625 n^2 求斯特林数就行.要减去的就是1号钥匙在1号房间的方案,即 s[ n-1 ][ m-1] . ...
随机推荐
- centos7 安全配置
CentOS是最多人用来运行服务器的 Linux 版本,最新版本是 CentOS 7.当你兴趣勃勃地在一台主机或 VPS 上安装 CentOS 7 后,首要的工作肯定是加强它的安全性,以下列出的七件事 ...
- poj 3614 奶牛美容问题 优先队列
题意:每头奶牛需要涂抹防晒霜,其中有效的范围 min~max ,现在有L种防晒霜,每种防晒霜的指数为 f 瓶数为 l,问多少只奶牛可以涂上合适的防晒霜?思路: 优先队列+贪心 当奶牛的 min< ...
- ubuntu12.04ppa安装emacs24
ppa地址:https://launchpad.net/~cassou/+archive/emacs 因为debian版本的emacs-snapshot维护者停止更新,所有ubuntu上的也停止了. ...
- UVa 1630 区间DP Folding
一个字符串如果能简写,要么是重复多次,按题中的要求简写:要么是左右两个部分分别简写后再拼起来. dp(i, j)表示字串(i, j)所能被简写的最短的字符串. 判断一个字符串是否为周期串以及求出它的周 ...
- action属性和data属性组合事例
- CornerStone使用教程(配置SVN,HTTP及svn简单使用)
1.SVN配置 假设你公司svn地址为:svn://192.168.1.111/svn/ios,用户名:svnserver,密码:123456 1:填写主机地址 2:如果你的主机地址中有端口号,如为1 ...
- Leetcode21--->Merge Two Sorted Lists(合并两个排序的单链表)
题目: 给出两个排序的单链表,合并两个单链表,返回合并后的结果: 解题思路: 解法还是很简单的,但是需要注意以下几点: 1. 如果两个链表都空,则返回null; 2. 如果链表1空,则返回链表2的 ...
- 指定特殊的安装目录用configure进行配置
linux - Make install, but not to default directories? - Stack Overflow I want to run 'make install' ...
- 【Luogu】P1903数颜色(带修改莫队)
题目链接 带修改莫队模板. 加一个变量记录现在是第几次修改,看看当前枚举的询问是第几次修改,改少了就改过去,改多了就改回来. 话说我栈用成队列了能过样例?!!!! 从此深信一句话:样例是出题人精心设计 ...
- ie7中position:fixed定位后导致margin:0 auto;无效
布局网页时,需要把header固定在上方.直接使用position:fixed;现代浏览器以及ie8以上均正常显示,但是ie7中,header里面的子元素设置的水平居中并没有效果.做了各种尝试,都没有 ...