B. Game of the Rows
time limit per test

1 second

memory limit per test

256 megabytes

input

standard input

output

standard output

Daenerys Targaryen has an army consisting of k groups of soldiers, the i-th group contains ai soldiers. She wants to bring her army to the other side of the sea to get the Iron Throne. She has recently bought an airplane to carry her army through the sea. The airplane has nrows, each of them has 8 seats. We call two seats neighbor, if they are in the same row and in seats {1, 2}, {3, 4}, {4, 5}, {5, 6} or {7, 8}.

A row in the airplane

Daenerys Targaryen wants to place her army in the plane so that there are no two soldiers from different groups sitting on neighboring seats.

Your task is to determine if there is a possible arranging of her army in the airplane such that the condition above is satisfied.

Input

The first line contains two integers n and k (1 ≤ n ≤ 10000, 1 ≤ k ≤ 100) — the number of rows and the number of groups of soldiers, respectively.

The second line contains k integers a1, a2, a3, ..., ak (1 ≤ ai ≤ 10000), where ai denotes the number of soldiers in the i-th group.

It is guaranteed that a1 + a2 + ... + ak ≤ 8·n.

Output

If we can place the soldiers in the airplane print "YES" (without quotes). Otherwise print "NO" (without quotes).

You can choose the case (lower or upper) for each letter arbitrary.

Examples
input
2 2
5 8
output
YES
input
1 2
7 1
output
NO
input
1 2
4 4
output
YES
input
1 4
2 2 1 2
output
YES
Note

In the first sample, Daenerys can place the soldiers like in the figure below:

In the second sample, there is no way to place the soldiers in the plane since the second group soldier will always have a seat neighboring to someone from the first group.

In the third example Daenerys can place the first group on seats (1, 2, 7, 8), and the second group an all the remaining seats.

In the fourth example she can place the first two groups on seats (1, 2) and (7, 8), the third group on seats (3), and the fourth group on seats (5, 6).

题意:

有n排座位,有k组 每组有a[i]人,问能否使不同组的人都不相邻。

先将a[i]分为4 2 1,先放4的部分,再2,再1。

AC代码:

 #include<bits/stdc++.h>
using namespace std; int a[]; int main(){
ios::sync_with_stdio(false);
int n,k;
cin>>n>>k;
for(int i=;i<k;i++){
cin>>a[i];
}
int sum1=n;
int sum2=n*;
for(int i=;i<k;i++){
int d=min(sum1,a[i]/);
sum1-=d;
a[i]-=d*;
}
sum2+=sum1;
for(int i=;i<k;i++){
int d=min(sum2,a[i]/);
sum2-=d;
a[i]-=d*;
}
int temp=sum1+sum2;
for(int i=;i<k;i++){
temp-=a[i];
}
if(temp>=){
cout<<"YES"<<endl;
}
else{
cout<<"NO"<<endl;
}
return ;
}

CF-839B的更多相关文章

  1. ORA-00494: enqueue [CF] held for too long (more than 900 seconds) by 'inst 1, osid 5166'

    凌晨收到同事电话,反馈应用程序访问Oracle数据库时报错,当时现场现象确认: 1. 应用程序访问不了数据库,使用SQL Developer测试发现访问不了数据库.报ORA-12570 TNS:pac ...

  2. cf之路,1,Codeforces Round #345 (Div. 2)

     cf之路,1,Codeforces Round #345 (Div. 2) ps:昨天第一次参加cf比赛,比赛之前为了熟悉下cf比赛题目的难度.所以做了round#345连试试水的深浅.....   ...

  3. cf Round 613

    A.Peter and Snow Blower(计算几何) 给定一个点和一个多边形,求出这个多边形绕这个点旋转一圈后形成的面积.保证这个点不在多边形内. 画个图能明白 这个图形是一个圆环,那么就是这个 ...

  4. ARC下OC对象和CF对象之间的桥接(bridge)

    在开发iOS应用程序时我们有时会用到Core Foundation对象简称CF,例如Core Graphics.Core Text,并且我们可能需要将CF对象和OC对象进行互相转化,我们知道,ARC环 ...

  5. [Recommendation System] 推荐系统之协同过滤(CF)算法详解和实现

    1 集体智慧和协同过滤 1.1 什么是集体智慧(社会计算)? 集体智慧 (Collective Intelligence) 并不是 Web2.0 时代特有的,只是在 Web2.0 时代,大家在 Web ...

  6. CF memsql Start[c]UP 2.0 A

    CF memsql Start[c]UP 2.0 A A. Golden System time limit per test 1 second memory limit per test 256 m ...

  7. CF memsql Start[c]UP 2.0 B

    CF memsql Start[c]UP 2.0 B B. Distributed Join time limit per test 1 second memory limit per test 25 ...

  8. CF #376 (Div. 2) C. dfs

    1.CF #376 (Div. 2)    C. Socks       dfs 2.题意:给袜子上色,使n天左右脚袜子都同样颜色. 3.总结:一开始用链表存图,一直TLE test 6 (1)如果需 ...

  9. CF #375 (Div. 2) D. bfs

    1.CF #375 (Div. 2)  D. Lakes in Berland 2.总结:麻烦的bfs,但其实很水.. 3.题意:n*m的陆地与水泽,水泽在边界表示连通海洋.最后要剩k个湖,总要填掉多 ...

  10. CF #374 (Div. 2) D. 贪心,优先队列或set

    1.CF #374 (Div. 2)   D. Maxim and Array 2.总结:按绝对值最小贪心下去即可 3.题意:对n个数进行+x或-x的k次操作,要使操作之后的n个数乘积最小. (1)优 ...

随机推荐

  1. 设计TCP服务器的规则

    设计TCP服务器,采用如下规则: 1.正等待连接请求的一端有一个固定长度的连接队列,该队列中的连接已被TCP接受(完成三次握手),但还没有被应用层接受.注意:TCP接受一个连接是将其放入这个队列,而应 ...

  2. adjA=(detA)A-1

    A–>adjA 连续性 反函数

  3. thinkphp5 (最棒的php开源框架)

    tp5的唯一可访问目录是public,即项目根目录: http://localhost/tp5/public/ 开发规范: 类库.函数文件统一以.php为后缀 类(命名和路径)和命名空间保持一致 类文 ...

  4. Grasswire&quot;草根连线&quot;:Pinterest图片流+Reddit众包新闻门户

    移动互联网技术对新闻媒体行业带来的变化是惊人的. 从专业的综合门户到维基.博客.微博.自媒体,新闻越来越散户化,众包化,也更具实时性和社交属性. Grasswire:姑且翻译为"草根连线&q ...

  5. STO存在哪些潜在隐患?

    STO(Security Token Offering),即证券型通证发行,无疑是现目前区块链圈子讨论最热门的话题之一,纵使STO有很好的前景,但是其潜在隐患也不得不引起重视. 第一,STO与分布式网 ...

  6. [持续集成]Jenkins 自动化部署 Maven 工程

    一.Jenkins 持续部署原理图 基础服务: 1 SVN 服务 SVN是Subversion的简称,是一个开放源代码的版本控制系统.说得简单一点SVN就是用于多个人共同开发同一个项目,共用资源的目的 ...

  7. CentOS7的yum安装mysql

    CentOS7的yum源中默认好像是没有mysql的.为了解决这个问题,我们要先下载mysql的repo源. 1. 下载mysql的repo源 $ wget http://repo.mysql.com ...

  8. BZOJ 2142 礼物 数论

    这道题是求组合数终极版. C(n,m) mod P n>=1e9 m>=1e9 P>=1e9且为合数且piqi<=1e5 拓展lucas定理. 实际上就是一点数论小知识的应用. ...

  9. LightOJ - 1321 Sending Packets —— 概率期望

    题目链接:https://vjudge.net/problem/LightOJ-1321 1321 - Sending Packets    PDF (English) Statistics Foru ...

  10. Spring Boot2.0之纯手写框架

    框架部分重点在于实现原理,懂原理! 废话不多说,动手干起来! SpringMVC程序入口? 没有配置文件,Spring 容器是如何加载? 回顾我们之前搭建Spring Boot项目使用的pom 引入的 ...