题目:https://www.luogu.org/problemnew/show/P4238

看博客:https://www.cnblogs.com/xiefengze1/p/9107752.html

https://www.cnblogs.com/Mychael/p/9045143.html

注意那个 \( \left\lceil n/2 \right\rceil \),因为如果 n = 6,那么 6 = 0+6 = 1+5 = 2+4 = 3+3,对 0,1,2,3 都有要求,所以下一层传 3;

而如果 n = 7,那么 7 = 0+7 = 1+6 = 2+5 = 3+4,对 0,1,2,3,4 都有要求,所以下一层传 4;

然后要注意每次要重新算 rev[i],因为长度变了!

别忘了实际的取模,就是把 n 及以上的系数都变成0。

代码如下:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
int const xn=(<<),mod=,g=;
int n,a[xn],b[xn],c[xn],rev[xn];
int rd()
{
int ret=,f=; char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=; ch=getchar();}
while(ch>=''&&ch<='')ret=(ret<<)+(ret<<)+ch-'',ch=getchar();
return f?ret:-ret;
}
ll pw(ll a,int b)
{
ll ret=;
for(;b;b>>=,a=(a*a)%mod)if(b&)ret=(ret*a)%mod;
return ret;
}
int upt(int x){while(x>=mod)x-=mod; while(x<)x+=mod; return x;} void ntt(int *a,int tp,int lim)
{
for(int i=;i<lim;i++)
if(i<rev[i])swap(a[i],a[rev[i]]);
for(int mid=;mid<lim;mid<<=)
{
int wn=pw(g,(mod-)/(mid<<));
if(tp==-)wn=pw(wn,mod-);//!!!
for(int j=,len=(mid<<);j<lim;j+=len)
{
int w=;
for(int k=;k<mid;k++,w=(ll)w*wn%mod)
{
int x=a[j+k],y=(ll)w*a[j+mid+k]%mod;
a[j+k]=upt(x+y); a[j+mid+k]=upt(x-y);
}
}
}
if(tp==)return; int inv=pw(lim,mod-);
for(int i=;i<lim;i++)a[i]=(ll)a[i]*inv%mod;
}
void inv(int n,int *a,int *b)
{
if(n==){b[]=pw(a[],mod-); return;}
inv((n+)>>,a,b);
int lim=,l=;
while(lim<=n+n)lim<<=,l++;
for(int i=;i<lim;i++)
rev[i]=((rev[i>>]>>)|((i&)<<(l-)));//!!!
for(int i=;i<n;i++)c[i]=a[i];
for(int i=n;i<lim;i++)c[i]=;
ntt(b,,lim); ntt(c,,lim);
for(int i=;i<lim;i++)b[i]=upt((((ll)-(ll)c[i]*b[i])%mod*b[i])%mod);
ntt(b,-,lim);
for(int i=n;i<lim;i++)b[i]=;//!
}
int main()
{
n=rd();
for(int i=;i<n;i++)a[i]=rd();
inv(n,a,b);
for(int i=;i<n;i++)printf("%d ",b[i]); puts("");
return ;
}

洛谷 P4238 [模板] 多项式求逆的更多相关文章

  1. 多项式求逆元详解+模板 【洛谷P4238】多项式求逆

    概述 多项式求逆元是一个非常重要的知识点,许多多项式操作都需要用到该算法,包括多项式取模,除法,开跟,求ln,求exp,快速幂.用快速傅里叶变换和倍增法可以在$O(n log n)$的时间复杂度下求出 ...

  2. 洛谷.4238.[模板]多项式求逆(NTT)

    题目链接 设多项式\(f(x)\)在模\(x^n\)下的逆元为\(g(x)\) \[f(x)g(x)\equiv 1\ (mod\ x^n)\] \[f(x)g(x)-1\equiv 0\ (mod\ ...

  3. 【洛谷4238】 多项式求逆(NTT,分治)

    前言 多项式求逆还是爽的一批 Solution 考虑分治求解这个问题. 直接每一次NTT一下就好了. 代码实现 #include<stdio.h> #include<stdlib.h ...

  4. 洛谷.3803.[模板]多项式乘法(FFT)

    题目链接:洛谷.LOJ. FFT相关:快速傅里叶变换(FFT)详解.FFT总结.从多项式乘法到快速傅里叶变换. 5.4 又看了一遍,这个也不错. 2019.3.7 叕看了一遍,推荐这个. #inclu ...

  5. 洛谷.3803.[模板]多项式乘法(NTT)

    题目链接:洛谷.LOJ. 为什么和那些差那么多啊.. 在这里记一下原根 Definition 阶 若\(a,p\)互质,且\(p>1\),我们称使\(a^n\equiv 1\ (mod\ p)\ ...

  6. 洛谷.4512.[模板]多项式除法(NTT)

    题目链接 多项式除法 & 取模 很神奇,记录一下. 只是主要部分,更详细的和其它内容看这吧. 给定一个\(n\)次多项式\(A(x)\)和\(m\)次多项式\(D(x)\),求\(deg(Q) ...

  7. 洛谷 P4512 [模板] 多项式除法

    题目:https://www.luogu.org/problemnew/show/P4512 看博客:https://www.cnblogs.com/owenyu/p/6724611.html htt ...

  8. 洛谷P4238【模板】多项式求逆

    洛谷P4238 多项式求逆:http://blog.miskcoo.com/2015/05/polynomial-inverse 注意:直接在点值表达下做$B(x) \equiv 2B'(x) - A ...

  9. 2018.12.30 洛谷P4238 【模板】多项式求逆

    传送门 多项式求逆模板题. 简单讲讲? 多项式求逆 定义: 对于一个多项式A(x)A(x)A(x),如果存在一个多项式B(x)B(x)B(x),满足B(x)B(x)B(x)的次数小于等于A(x)A(x ...

随机推荐

  1. debian jessie install note

    Debian支持非常多的硬件,包括arm/mips/ppc/x86,于是想安装个Debian看看,也不想总屈服在canonical的ubuntu下面. 光盘镜像太多了 纯社区版的安装总是没有想像得那么 ...

  2. 汉字unicode码表范围和常用汉字unicode码

    utf-8吗表中所有汉字的区间的正则表达式[\u4e00-\u9fa5] 汉字常用字unicode吗表String base ="\u7684\u4e00\u4e86\u662f\u6211 ...

  3. 源码维护基本命令diff_patch_quilt

    源码维护基本命令 一. diff--生成补丁 diff [命令行选项] 源文件 新文件 -r 递归处理相应目录 -N 包含新文件到patch -u 输出统一格式(unified format),这种格 ...

  4. SpringBoot定时任务升级篇(动态添加修改删除定时任务)

    需求缘起:在发布了<Spring Boot定时任务升级篇>之后得到不少反馈,其中有一个反馈就是如何动态添加修改删除定时任务?那么我们一起看看具体怎么实现,先看下本节大纲: (1)思路说明: ...

  5. 目标跟踪之camshift---opencv中meanshift和camshift例子的应用

    在这一节中,主要讲目标跟踪的一个重要的算法Camshift,因为它是连续自使用的meanShift,所以这2个函数opencv中都有,且都很重要.为了让大家先达到一个感性认识.这节主要是看懂和运行op ...

  6. 中面试中你不可回避的C、C++的问题(一)

    基础中的基础 局部变量与全局变量问题 (使用’ ::’) 2.      如何在另个文件中引用一个全局变量 (extern) 3.      全局变量可以定义被多个C文件包含,并且是static 4. ...

  7. 前端编程提高之旅(三)----浏览器兼容之IE6

    在爱奇艺实习期间,乐帝主要负责移动端活动页面的制作,因为移动浏览器是随着智能手机兴起的,这就决定了移动端不会重蹈浏览器兼容问题的覆辙.一開始就比較好的支持web标准,而纵观整个互联网行业,移动web开 ...

  8. 具体解释TCP协议的服务特点以及连接建立与终止的过程(俗称三次握手四次挥手)

    转载请附本文的链接地址:http://blog.csdn.net/sahadev_/article/details/50780825 ,谢谢. tcp/ip技术经常会在我们面试的时候出现,非常多公司也 ...

  9. win10 64位 安装TensorFlow

    .由于之前安装的是python2.7 ,tensorflow在windows下必须要python3 网上查了一下有三种方法2版本共存 1.不用Anaconda windows 安装python2 与p ...

  10. word操作