http://acm.hdu.edu.cn/showproblem.php?pid=1098

其实一开始猜测只要验证x=1的时候就行了,但是不知道怎么证明。

题解表示用数学归纳法,假设f(x)成立,证明f(x+1)成立需要什么条件。

代入之后发现有很多二项式系数,导致他们都是65的倍数,剩下的恰好就是 f(x) 和 18+ka 。

那么只需要找到最小的a使得 18+ka是65的倍数。

题解说,毕竟65毕竟小,可以枚举a。因为a+65与a的对65的余数是一样的,所以只要枚举0到64就可以了。

我的想法是用扩展欧几里得求这个的解。

首先由裴蜀定理 ax+by=c 有解,当且仅当gcd(a,b)|c

那么 18+ka=65t 即 -ka+65t=18 求a的最小非负整数解。套方程的模板。

忘记写解方程的返回值导致返回一个任意值,有毒。

#include<bits/stdc++.h>
using namespace std;
typedef long long ll; //扩展欧几里得算法:返回 g=gcd(a,b) ,以及对应的等式 ax+by=g 的解
ll exgcd(ll a,ll b,ll &x,ll &y) {
if(!a&&!b)
return -1;
if(!b) {
x=1,y=0;
return a;
}
ll d=exgcd(b,a%b,y,x);
y-=a/b*x;
return d;
} bool Liner_qu(ll a, ll b, ll c, ll &x, ll &y) {
if(a==0) {
if(b==0) {
if(c==0) {
x=0;
y=0;
return true;
} else {
return false;
}
}
if(c%b==0) {
x=0;
y=c/b;
return true;
//0x+by=c
} else
return false;
}
if(b==0) {
if(c%a==0) {
x=c/a;
y=0;
return true;
//ax+0y=c
} else {
return false;
}
}
ll g=__gcd(a,b);
if(c%g){
return false;
}
//裴蜀定理 ll k=c/g;
exgcd(a,b,x,y);
//ax+by=g的解
x *= k; // 任意一解
y *= k; ll tx = x; x %= b; //最小解
if(x<0)
x += abs(b); //最小非负整数解
k=(tx-x)/b;
y += k*a; //对应的y的解
return true;
} ll F(int k) {
int a;
{
if(k%5==0||k%13==0)
return -1;
else {
a=1;
while((k*a+18)%65!=0) {
a++;
}
return a;
}
}
} ll G(int k) {
ll a,b,c,x,y;
a=-k;
b=65;
c=18; bool flag=Liner_qu(a,b,c,x,y); if(flag) {
return x;
} else {
return -1;
}
} int main() {
int k;
while(cin>>k) {
ll a,b,c,x,y;
a=-k;
b=65;
c=18; bool flag=Liner_qu(a,b,c,x,y); if(flag){
cout<<x<<endl;
}
else{
cout<<"no"<<endl;
}
} /*for(int k=1; k<=10000; k++) {
ll s1=F(k);
ll s2=G(k);
if(s1!=s2) {
cout<<"k="<<k<<endl;
cout<<s1<<endl<<s2<<endl;
}
}*/
}

HDU - 1098 - Ignatius's puzzle - ax+by=c的更多相关文章

  1. HDU 1098 Ignatius's puzzle

    http://acm.hdu.edu.cn/showproblem.php?pid=1098 题意 :输入一个K,让你找一个a,使得f(x)=5*x^13+13*x^5+k*a*x这个f(x)%65等 ...

  2. 数学--数论--HDU 1098 Ignatius's puzzle (费马小定理+打表)

    Ignatius's puzzle Problem Description Ignatius is poor at math,he falls across a puzzle problem,so h ...

  3. HDU 1098 Ignatius's puzzle(数学归纳)

    以下引用自http://acm.hdu.edu.cn/discuss/problem/post/reply.php?postid=8466&messageid=2&deep=1 题意以 ...

  4. 题解报告:hdu 1098 Ignatius's puzzle

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1098 题目中文是这样的: 伊格内修斯在数学上很差,他遇到了一个难题,所以他别无选择,只能上诉埃迪. 这 ...

  5. HDU 1098 Ignatius's puzzle 费马小定理+扩展欧几里德算法

    题目大意: 给定k,找到一个满足的a使任意的x都满足 f(x)=5*x^13+13*x^5+k*a*x 被65整除 推证: f(x) = (5*x^12 + 13 * x^4 + ak) * x 因为 ...

  6. HDOJ 1098 Ignatius's puzzle

    Problem Description Ignatius is poor at math,he falls across a puzzle problem,so he has no choice bu ...

  7. hdu 1098 Ignatius's puzz

    有关数论方面的题要仔细阅读,分析公式. Problem Description Ignatius is poor at math,he falls across a puzzle problem,so ...

  8. 【HDOJ】1098 Ignatius's puzzle

    数学归纳法,得证只需求得使18+ka被64整除的a.且a不超过65. #include <stdio.h> int main() { int i, j, k; while (scanf(& ...

  9. 数学: HDU1098 Ignatius's puzzle

    Ignatius's puzzle Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

随机推荐

  1. 一起学android之怎样卸载指定的 应用程序(25)

    效果图例如以下: 代码例如以下: public class MainActivity extends Activity { private Button btn_delete; @Override p ...

  2. LeetCode(70)题解: climbing-stairs

    https://leetcode.com/problems/climbing-stairs/ 题目: You are climbing a stair case. It takes n steps t ...

  3. AAC包增加ADTS头Without MediaCodec

    AAC原始码流无法直接播放,一般需要封装为ADTS格式才能再次使用,本博主在android中用MediaCodec编码得到的AAC就是raw格式,为了保存为.aac格式,需要增加adts头,这样就可以 ...

  4. J++ C#

    J++几乎有与Java相同的编程语言和虚拟机.

  5. Recurrent neural networks are very powerful, because they combine two properties

    https://www.cs.toronto.edu/~hinton/csc2535/notes/lec10new.pdf Distributed hidden state that allows t ...

  6. eclipse调试第三方jar包需要源码的问题

    很多时候测试自己的jar包功能时,需要有一个测试工程导入该jar包,但是一般在调试的时候,需要跟进去看看步骤和逻辑是否正确,这个时候就需要在jar包的源码中下断点.最近刚好自己也会经常这样做,也遇到了 ...

  7. linux环境下启动tomcat7出现时间过长(已经编译完成的项目)问题解决!

    已经编译完成的项目,系统启动过程中,提示: INFO: Starting Servlet Engine: Apache Tomcat/7.0.81 Sep 20, 2017 3:17:32 PM or ...

  8. ecshop属性排序

    属性的排序有三个方式:sort_order, attr_price, goods_attr_id如果要修改的话,修改 includes/lib_goods.php文件的 get_goods_prope ...

  9. cc 和gcc编译器

    从名字上看,老的unix系统的CC程式叫做C Compiler.但GCC这个名字按GNU的说法叫做Gnu Compiler Collection.因为gcc包含非常多编译器(C, C++, Objec ...

  10. 青岛理工ACM交流赛 J题 数格子算面积

    数格子算面积 Time Limit: 1000MS Memory limit: 262144K 题目描述 给你一个多边形(用’\’和’/’表示多边形的边),求多边形的面积. 输入  第一行两个正整数h ...