【数学 技巧】divisor
没考虑重复lcm处理被卡TLE没A真是可惜
题目大意
$n$为$k-可表达的$当且仅当数$n$能被表示成$n$的$k$个因子之和,其中$k$个因子允许相等。
求$[A,B]$之间$k-可表达$的数的个数
$T \le 5*10^4,2 \le K \le 7,1 \le A \le B \le 10^{18}$
题目分析
每一种拆分可以视作$1=\frac{1}{a}+\frac{1}{b}+...$的形式。因为K相当小,可以先搜出每个$K$下的拆分情况,问题就转化成了求$[l,r]$之间有多少数至少是其中一个的倍数——这是一个相当经典的问题。
但是这题的数据范围要求进一步细节优化。
注意到在极限数据$K=7,T=5*10^4$下,纯粹地$2^{因数}$枚举每一种情况lcm的做法相当低效。通过观察/经验会发现,这$2^{因数}$个lcm有大量是重复的。那么我们就转而保存每个lcm的系数而非把lcm全部存下来。
这是一个计算倍数容斥问题时,显著而不甚易想起的优化。
代码很丑。没心情重构。
#include<bits/stdc++.h>
const int ass5[] = {, , , , , , };
const int ass6[] = {, , , , , , };
const int ass7[] = {, , , , , , , , , , , , , , , };
typedef long long ll; int T;
ll l,r,k,gmpAss5[],gmpAss6[],gmpAss7[]; ll read()
{
char ch = getchar();
ll num = , fl = ;
for (; !isdigit(ch); ch = getchar())
if (ch=='-') fl = -;
for (; isdigit(ch); ch = getchar())
num = (num<<)+(num<<)+ch-;
return num*fl;
}
int gcd(int a, int b){return !b?a:gcd(b, a%b);}
ll assp5(ll x)
{
ll ret = ;
for (int i=; i<; i++)
ret += x/gmpAss5[i];
return ret;
}
ll assp6(ll x)
{
ll ret = ;
for (int i=; i<; i++)
ret += x/gmpAss6[i];
return ret;
}
ll assp7(ll x)
{
ll ret = ;
for (int i=; i<=gmpAss7[]; i++)
if (gmpAss7[i]) ret += x/gmpAss7[i];
return ret;
}
void makeAss5()
{
for (int i=, ass=; i<(<<(ass)); i++)
{
ll dt = , lst = , del;
for (int j=, t=i; j<=ass; j++, t>>=)
if (t&){
++dt, del = gcd(lst, ass5[j]);
lst *= ass5[j]/del;
}
gmpAss5[i] = (dt&)?lst:-lst;
}
}
void makeAss6()
{
for (int i=, ass=; i<(<<(ass)); i++)
{
ll dt = , lst = , del;
for (int j=, t=i; j<=ass; j++, t>>=)
if (t&){
++dt, del = gcd(lst, ass6[j]);
lst *= ass6[j]/del;
}
gmpAss6[i] = (dt&)?lst:-lst;
}
}
void makeAss7()
{
ll &tot = gmpAss7[];
for (int i=, ass=; i<(<<(ass)); i++)
{
ll dt = , lst = , del;
for (int j=, t=i; j<=ass; j++, t>>=)
if (t&){
++dt, del = gcd(lst, ass7[j]);
lst *= ass7[j]/del;
}
lst = (dt&)?lst:-lst;
bool chk = ;
for (int i=; i<=tot&&chk; i++)
if (gmpAss7[i]==-lst) gmpAss7[i] = , chk = ;
if (chk) gmpAss7[++tot] = lst;
}
}
ll calc(ll x, ll k)
{
ll ret = ;
if (k==) return x;
if (k==) return x>>;
if (k==) return (x/+x/-x/);
if (k==) return (x/+x/+x/-x/-x/-x/+x/);
if (k==) return assp5(x);
if (k==) return assp6(x);
if (k==) return assp7(x);
return ret;
}
void write(ll x){if (x/) write(x/);putchar(x%+'');}
int main()
{
makeAss5(), makeAss6(), makeAss7();
for (scanf("%d",&T); T; --T)
{
l = read(), r = read(), k = read();
write(calc(r, k)-calc(l-, k)), putchar('\n');
}
return ;
}
END
【数学 技巧】divisor的更多相关文章
- 丑数<数学技巧>
题意:丑数就是质因子只有2,3,5 ,7,的数,另外1也是丑数.求第n(1=<n<=5842)个丑数,n=0,结束. 思路:.3.5或者7的结果(1除外).那么,现在最主要的问题是如何排序 ...
- nyoj--1170--最大的数(数学技巧)
最大的数 时间限制:1000 ms | 内存限制:65535 KB 难度:3 描述 小明和小红在打赌说自己数学学的好,于是小花就给他们出题了,考考他们谁NB,题目是这样的给你N个 ...
- hdu 5675 ztr loves math(数学技巧)
Problem Description ztr loves research Math.One day,He thought about the "Lower Edition" o ...
- HDU更多的学校比赛9场 HDU 4965Fast Matrix Calculation【矩阵运算+数学技巧】
困难,.,真,,,不是太困难 的问题是,有一个矩阵运算优化 您有权发言权N*K矩阵A给K*N矩阵B(1<=N<=1000 && 1=<K<=6).他们拿起了第一 ...
- 51nod 1170 1770 数数字(数学技巧)
解题思路:看到题后,直接想到分成两种情况: ①:a*b >9 这里又分成两种 1. n==1 a*b 直接是一个两位数 求得十位和个位(这里十位和个位不可能相等) 然后如果等于d 则结果=1 2 ...
- LeetCode 319 ——Bulb Switcher——————【数学技巧】
319. Bulb Switcher My Submissions QuestionEditorial Solution Total Accepted: 15915 Total Submissions ...
- CF 305B——Continued Fractions——————【数学技巧】
B. Continued Fractions time limit per test 2 seconds memory limit per test 256 megabytes input stand ...
- hdu-2256 Problem of Precision---矩阵快速幂+数学技巧
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=2256 题目大意: 题目要求的是(sqrt(2)+sqrt(3))^2n %1024向下取整的值 解题 ...
- nyoj--84--阶乘的0(数学技巧)
阶乘的0 时间限制:3000 ms | 内存限制:65535 KB 难度:3 描述 计算n!的十进制表示最后有多少个0 输入 第一行输入一个整数N表示测试数据的组数(1<=N<=100 ...
随机推荐
- DOM核心API
是什么? 是各大浏览器提供的针对HTML和XML文档的一个API(Application Programming Interface应用程序编程接口).DOM描述了一个层次化的节点树,容许开发人员对D ...
- pycharm安装教程,汉化教程,以及正版激活码---
密钥在下面 安装过程 PyCharm2019本地下载: http://www.100c1.com/upload/default/20190420/1c08a3209029093a8b34df941f1 ...
- Unity 播放的声音比声音文件小很多-AudioListener-AudioClip
今天做愤怒的小鸟时,播放的时候非常非常小,怎么也查不到原因,就去问群里的大佬.原来, 播放音乐的方法: AudioSource.PlayClipAtPoint(audioclip, transform ...
- JS中substr与substring的区别
js中substr和substring都是截取字符串中子串,非常相近,可以有一个或两个参数. 语法:substr(start [,length]) 第一个字符的索引是0,start必选 length可 ...
- CC05:基本字符串压缩
题目 利用字符重复出现的次数,编写一个方法,实现基本的字符串压缩功能.比如,字符串"aabcccccaaa"经压缩会变成"a2b1c5a3".若压缩后的字符串没 ...
- python数值类型与序列类型
基本运算符 / 浮点除法 //整除 x**y x的y次方 python中严格区分大小写 type(xx)/内置函数,查看变量xx的类型 id(xx)/内置函数,查看变量xx的内存地址 //----- ...
- 牛客假日团队赛2 G.CountyFairEvents
链接: https://ac.nowcoder.com/acm/contest/924/G 题意: Farmer John has returned to the County Fair so he ...
- mycat学习日记:全局sequence
mycat分库分表的情况下,原生mysql的自增长主键无法满足主键全局唯一这个要求.看了MYCAT社区从零开始的一篇博客,加上自己的实践,大概总结一下. 目前mycat对于全局sequence主要提供 ...
- JS——变量声明、变量类型、命名规范
变量声明: JavaScript是一种弱类型语言,它的变量类型由它的值来决定,var是变量声明. 变量类型: 基本类型:number.string.boolean(布尔类型:var a=true/fa ...
- standby checking script 3则 V1 shell 脚本
---1 #!/bin/sh export ORACLE_SID=hdbexport ORACLE_BASE=/db/hdbdg/app/product/databaseexport ORACLE_H ...