CF 148D D Bag of mice (概率dp)
2 seconds
256 megabytes
standard input
standard output
The dragon and the princess are arguing about what to do on the New Year's Eve. The dragon suggests flying to the mountains to watch fairies dancing in the moonlight, while the princess thinks they should just go to bed early. They are desperate to come to an amicable agreement, so they decide to leave this up to chance.
They take turns drawing a mouse from a bag which initially contains w white and b black mice. The person who is the first to draw a white mouse wins. After each mouse drawn by the dragon the rest of mice in the bag panic, and one of them jumps out of the bag itself (the princess draws her mice carefully and doesn't scare other mice). Princess draws first. What is the probability of the princess winning?
If there are no more mice in the bag and nobody has drawn a white mouse, the dragon wins. Mice which jump out of the bag themselves are not considered to be drawn (do not define the winner). Once a mouse has left the bag, it never returns to it. Every mouse is drawn from the bag with the same probability as every other one, and every mouse jumps out of the bag with the same probability as every other one.
The only line of input data contains two integers w and b (0 ≤ w, b ≤ 1000).
Output the probability of the princess winning. The answer is considered to be correct if its absolute or relative error does not exceed10 - 9.
1 3
0.500000000
5 5
0.658730159
Let's go through the first sample. The probability of the princess drawing a white mouse on her first turn and winning right away is 1/4. The probability of the dragon drawing a black mouse and not winning on his first turn is 3/4 * 2/3 = 1/2. After this there are two mice left in the bag — one black and one white; one of them jumps out, and the other is drawn by the princess on her second turn. If the princess' mouse is white, she wins (probability is 1/2 * 1/2 = 1/4), otherwise nobody gets the white mouse, so according to the rule the dragon wins.
题意:
原来袋子里有w只白鼠和b只黑鼠
龙和王妃轮流从袋子里抓老鼠。谁先抓到白色老师谁就赢。
王妃每次抓一只老鼠,龙每次抓完一只老鼠之后会有一只老鼠跑出来。
每次抓老鼠和跑出来的老鼠都是随机的。
如果两个人都没有抓到白色老鼠则龙赢。王妃先抓。
问王妃赢的概率。
分析:
设dp[i][j]表示现在轮到王妃抓时有i只白鼠,j只黑鼠,王妃赢的概率
明显 dp[0][j]=0,0<=j<=b;因为没有白色老鼠了
dp[i][0]=1,1<=i<=w;因为都是白色老鼠,抓一次肯定赢了。
dp[i][j]可以转化成下列四种状态:
1、王妃抓到一只白鼠,则王妃赢了,概率为i/(i+j);
2、王妃抓到一只黑鼠,龙抓到一只白色,则王妃输了,概率为j/(i+j)*i/(i+j-1).
3、王妃抓到一只黑鼠,龙抓到一只黑鼠,跑出来一只黑鼠,则转移到dp[i][j-3]。
概率为j/(i+j)*(j-1)/(i+j-1)*(j-2)/(i+j-2);
4、王妃抓到一只黑鼠,龙抓到一只黑鼠,跑出来一只白鼠,则转移到dp[i-1][j-2].
概率为j/(i+j)*(j-1)/(i+j-1)*i/(i+j-2);
当然后面两种情况要保证合法,即第三种情况要至少3只黑鼠,第四种情况要至少2只白鼠
分析转载自: http://www.cnblogs.com/kuangbin/archive/2012/10/04/2711184.html
概率dp正推。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <queue>
#include <cmath>
#include <algorithm>
#define LL __int64
const int maxn = 1e3 + ;
using namespace std;
double d[maxn][maxn]; int main()
{
int w, b, i, j;
while(~scanf("%d%d", &w, &b))
{
memset(d, , sizeof(d));
for(i = ; i <= w; i++) //一定要注意从1开始,不然初始化会出错,d[0][0]应该==0
d[i][] = 1.0;
for(i = ; i <= w; i++) //i和j也都要从1开始,不然因为下面第一个式子会重复计算
for(j = ; j <= b; j++)
{
d[i][j] += (double)i/(i+j);
if(j>=)
d[i][j] += (double)j/(i+j)*(double)(j-)/(i+j-)*(double)i/(i+j-)*d[i-][j-];
if(j>=)
d[i][j] += (double)j/(i+j)*(double)(j-)/(i+j-1.0)*(double)(j-)/(i+j-2.0)*d[i][j-];
}
printf("%.9lf\n", d[w][b]);
}
return ;
}
CF 148D D Bag of mice (概率dp)的更多相关文章
- Codeforces 148D 一袋老鼠 Bag of mice | 概率DP 水题
除非特别忙,我接下来会尽可能翻译我做的每道CF题的题面! Codeforces 148D 一袋老鼠 Bag of mice | 概率DP 水题 题面 胡小兔和司公子都认为对方是垃圾. 为了决出谁才是垃 ...
- CF 148D Bag of mice 概率dp 难度:0
D. Bag of mice time limit per test 2 seconds memory limit per test 256 megabytes input standard inpu ...
- codeforce 148D. Bag of mice[概率dp]
D. Bag of mice time limit per test 2 seconds memory limit per test 256 megabytes input standard inpu ...
- codeforces 148D Bag of mice(概率dp)
题意:给你w个白色小鼠和b个黑色小鼠,把他们放到袋子里,princess先取,dragon后取,princess取的时候从剩下的当当中任意取一个,dragon取得时候也是从剩下的时候任取一个,但是取完 ...
- Bag of mice(概率DP)
Bag of mice CodeForces - 148D The dragon and the princess are arguing about what to do on the New Y ...
- Codeforces Round #105 (Div. 2) D. Bag of mice 概率dp
题目链接: http://codeforces.com/problemset/problem/148/D D. Bag of mice time limit per test2 secondsmemo ...
- CF 148D D. Bag of mice (概率DP||数学期望)
The dragon and the princess are arguing about what to do on the New Year's Eve. The dragon suggests ...
- Codeforces 148D Bag of mice 概率dp(水
题目链接:http://codeforces.com/problemset/problem/148/D 题意: 原来袋子里有w仅仅白鼠和b仅仅黑鼠 龙和王妃轮流从袋子里抓老鼠. 谁先抓到白色老师谁就赢 ...
- 抓老鼠 codeForce 148D - Bag of mice 概率DP
设dp[i][j]为有白老鼠i只,黑老鼠j只时轮到公主取时,公主赢的概率. 那么当i = 0 时,为0 当j = 0时,为1 公主可直接取出白老鼠一只赢的概率为i/(i+j) 公主取出了黑老鼠,龙必然 ...
随机推荐
- android菜鸟学习笔记3----关于AndroidMainfest.xml
每个android项目都包含一个AndroidMainfest.xml文件,它包含了组成应用程序的每一个Acitivity.Service.Content Provider和Broadcast Rec ...
- Grunt学习笔记【5】---- expand使用方法
本文主要讲expand使用方法. 当你希望处理大量的单个文件时,这里有一些附加的属性可以用来动态的构建一个文件列表.这些属性都可以用于 Compact 和 Files Array 文件映射格式. ex ...
- Wix Burn:如何将32位和64位的安装包制作成一个安装包
由于Windows Installer不是平台独立的(即区分32-bit和64-bit),因此用Wix制作的安装包在编译不能像.net应用那样采用Any CPU编译,而必须制定是目标Platform是 ...
- pandas,apply并行计算的一个demo
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Date : 2018-10-11 17:55:26 # @Author : Sheldon (thi ...
- API的理解和使用——集合
集合类型的命令及时间复杂度 区间 命令 功能 时间复杂度 集合内 sadd key element [element ... ] 添加元素 O(k),k是元素个数 srem key elemen ...
- Java 内存模型及GC原理
一个优秀Java程序员,必须了解Java内存模型.GC工作原理,以及如何优化GC的性能.与GC进行有限的交互,有一些应用程序对性能要求较高,例如嵌入式系统.实时系统等,只有全面提升内存的管理效率,才能 ...
- URAL - 1297 Palindrome —— 后缀数组 最长回文子串
题目链接:https://vjudge.net/problem/URAL-1297 1297. Palindrome Time limit: 1.0 secondMemory limit: 64 MB ...
- 关于JMS和MQ
2.1 什么是JMS? JMS是java的消息服务,JMS的客户端之间可以通过JMS服务进行异步的消息传输. 2.2 什么是消息模型 ○ Point-to-Point(P2P) --- 点对点 ○ P ...
- jetty使用jndi数据源
之前将项目正常的数据源统一切换成jndi访问的形式(是将c3p0以mbean形式安装到jboss做的数据连接池), 本地测试用的jetty服务器,为了统一数据库访问部分,我也查看文档找到了jetty提 ...
- BZOJ 1629 [Usaco2005 Nov]Cow Acrobats:贪心【局部证明】
题目链接:http://begin.lydsy.com/JudgeOnline/problem.php?id=1332 题意: 有n头牛在“叠罗汉”. 第i头牛的体重为w[i],力量为s[i]. 一头 ...