机器学习能良好解决的问题

  • 识别模式
  • 识别异常
  • 预測

大脑工作模式

人类有个神经元,每一个包括个权重,带宽要远好于工作站。

神经元的不同类型

Linear (线性)神经元 



Binary threshold (二值)神经元 

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQv/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" width="300" alt="">

\begin{array}{l}z = b + \sum\limits_i^n {{x_i}{w_i}} \\y = \left\{ \begin{array}{l}\begin{array}{*{20}{c}}1&{z \ge 0}\end{array}\\\begin{array}{*{20}{c}}0&{otherwise}\end{array}\end{array} \right.\\\theta = - b\end{array}" alt="">

ReLu(Rectified Linear Units) 神经元

 

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQv/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" width="300" alt="">

 

Sigmoid 神经元 

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQv/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" width="300" alt="">

\begin{array}{l}z = b + \sum\limits_i^n {{x_i}{w_i}} \\y = \frac{1}{{1 + {e^{ - z}}}}\end{array}" alt="">

Stochastic binary (随机二值)神经元 

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQv/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" width="300" alt="">

\begin{array}{l}z = b + \sum\limits_i^n {{x_i}{w_i}} \\p\left( {s = 1} \right) = \frac{1}{{1 + {e^{ - z}}}}\end{array}" alt="">

学习任务的不同类型

Supervised learning(监督学习)

给定输入向量。学习怎样预測输出向量。

比如:回归与聚类。

Reinforcement learning(增强学习)

学习怎样选择动作去最大化payoff(收益)。

输出是一个动作,或者动作的序列。唯一的监督信号是一个标量反馈。

难度在于反馈在非常大程度上是有延时的,并且一个标量包括的信息量非常有限。



Unsupervised learning(非监督学习)

发现输入的良好内在表达形式。

提供输入的紧凑、低维度表达。

由已经学到的特征来提供输入的经济性高维度表达。

聚类是极度稀疏的编码形式。仅仅有一维非零特征。





神经网络的不同类型

Feed-forward neural networks (前向传播神经网络)

超过一层隐含层即为深度神经网络。

 

Recurrent networks(循环神经网络) 

生物学上更可信。

用RNN能够给序列进行建模:

等效于很深的网络,每层隐含层相应一个时间片。

隐含层有能力记忆长时间信息。 

从几何角度看感知机

Weight-space (权重空间)

每一个权重相应空间一维。

空间每一点相应某个特定权重选择。

忽略偏置项,每一个训练样本能够视为一个过原点的超平面。

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQv/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" width="300" alt="">

把全部的训练样本都考虑进去,权重的可行解就在一个凸锥里面了。 

二值神经元做不到的事

同或 

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQv/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" width="300" alt="">

循环简单模式识别 

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQv/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" width="300" alt="">

不论对于模式A或是模式B,每次把整个训练集跑完时,神经元得到的输入都是全部权值的4倍。

没有不论什么差别。也就无法区分两者之间的差异了(非循环模式能够识别)。

使用隐藏神经元

线性神经元再多层也是线性的,不会添加网络学习能力。

固定输出的非线性也不够。

学习隐藏层的权重等效于学习特征。



欢迎參与讨论并关注本博客微博以及知乎个人主页兴许内容继续更新哦~

转载请您尊重作者的劳动,完整保留上述文字以及文章链接,谢谢您的支持!

Neural Networks for Machine Learning by Geoffrey Hinton (1~2)的更多相关文章

  1. Neural Networks for Machine Learning by Geoffrey Hinton (4)

    一种能够学习家谱关系的简单神经网络 血缘一共同拥有12种关系: son, daughter, nephew, niece, father, mother, uncle, aunt, brother, ...

  2. [Hinton] Neural Networks for Machine Learning - Basic

    Link: Neural Networks for Machine Learning - 多伦多大学 Link: Hinton的CSC321课程笔记1 Link: Hinton的CSC321课程笔记2 ...

  3. [Hinton] Neural Networks for Machine Learning - Converage

    Link: Neural Networks for Machine Learning - 多伦多大学 Link: Hinton的CSC321课程笔记 Ref: 神经网络训练中的Tricks之高效BP ...

  4. [Hinton] Neural Networks for Machine Learning - RNN

    Link: Neural Networks for Machine Learning - 多伦多大学 Link: Hinton的CSC321课程笔记 补充: 参见cs231n 2017版本,ppt写得 ...

  5. [Hinton] Neural Networks for Machine Learning - Bayesian

    Link: Neural Networks for Machine Learning - 多伦多大学 Link: Hinton的CSC321课程笔记 Lecture 09 Lecture 10 提高泛 ...

  6. Machine Learning and Data Mining(机器学习与数据挖掘)

    Problems[show] Classification Clustering Regression Anomaly detection Association rules Reinforcemen ...

  7. [Hinton] Neural Networks for Machine Learning - Hopfield Nets and Boltzmann Machine

    Lecture 11 — Hopfield Nets Lecture 12 — Boltzmann machine learning Ref: 能量模型(EBM).限制波尔兹曼机(RBM) 高大上的模 ...

  8. 课程一(Neural Networks and Deep Learning),第二周(Basics of Neural Network programming)—— 4、Logistic Regression with a Neural Network mindset

    Logistic Regression with a Neural Network mindset Welcome to the first (required) programming exerci ...

  9. 课程一(Neural Networks and Deep Learning),第一周(Introduction to Deep Learning)—— 2、10个测验题

    1.What does the analogy “AI is the new electricity” refer to?  (B) A. Through the “smart grid”, AI i ...

随机推荐

  1. 中国首届CSS开发者大会讲师照片

    中国首届CSS开发者大会讲师照片 Bert Bos Winter 点头猪 灭灭 jaychsu Hax 尤雨溪 一丝 勾三股四 小倩 **

  2. poj2449 Remmarguts' Date K短路 A*

    K短路裸题. #include <algorithm> #include <iostream> #include <cstring> #include <cs ...

  3. PostgreSQL 全文索引

    -- 首先要创建自定义的词典,在不使用停用词文件的情况下创建自定义词典,例如: CREATE TEXT SEARCH DICTIONARY english_stem_nostop ( Template ...

  4. Python爬虫selenium、PhanmJs

    selenium:可以模拟鼠标进行一些操作 实例1:实现自动打开google浏览器,进行百度搜索,并关闭浏览器 from selenium import webdriver from time imp ...

  5. 九度oj 题目1475:IP数据包解析

    题目描述: 我们都学习过计算机网络,知道网络层IP协议数据包的头部格式如下: 其中IHL表示IP头的长度,单位是4字节:总长表示整个数据包的长度,单位是1字节. 传输层的TCP协议数据段的头部格式如下 ...

  6. javascript图片放大镜效果展示

    javascript图片放大镜效果展示 <!DOCTYPE html> <html> <head lang="en"> <meta cha ...

  7. iOS学习笔记36-Masonry自动布局

    一.Masonry介绍 之前我们在屏幕适配的章节中学习过AutoLayout的使用,但那都是在可视化界面上进行添加约束完成的,我们很多时候都需要在代码中使用AutoLayout约束,苹果也为我们提供了 ...

  8. 【bzoj1717】[Usaco2006 Dec]Milk Patterns 产奶的模式 SA+二分

    Description 农夫John发现他的奶牛产奶的质量一直在变动.经过细致的调查,他发现:虽然他不能预见明天产奶的质量,但连续的若干天的质量有很多重叠.我们称之为一个“模式”. John的牛奶按质 ...

  9. jquery中append、prepend, before和after方法的区别(一)

    原文:http://blog.csdn.net/woosido123/article/details/64439490 在 jquery中append() 与 prepend()是在元素内插入内容(该 ...

  10. maven打包加入依赖包以及加入本地依赖包的方法

    Maven引入本地Jar包并打包进War包中 1.概述 在平时的开发中,有一些Jar包因为种种原因,在Maven的中央仓库中没有收录,所以就要使用本地引入的方式加入进来. 2. 拷贝至项目根目录 项目 ...