传送门

为什么感觉状压dp都好玄学……FlashHu大佬太强啦……

设$f_{i,j}$表示当前选的点集为$i$,下一次要加入的点集为$j$时,新加入的点和原有的点之间的最小边权。具体的转移可以枚举$i$,然后枚举$i$的补集$j$,找出$j$的$lowbit_j$

那么转移就是$$f_{i,j}=min\{f_{i,j-lowbit_j}+min\{dis[lowbit_j][i]\}\}$$

据说这一部分的复杂度是$O(3^nn)$,因为$n$元素的所有子集的大小之和是$3^n$(然而我并不会证)

然后考虑把整张图给分层,设$g_{l,i}$表示总层数为$l$,已选点集为$i$时的最小答案,然后转移就是

$$g_{l,i}=\sum_{j\in i}g_{l-1,i-j}+l*f_{i-j,j}$$

据说这个复杂度也是$O(3^nn)$,最后$max\{g_{l,2^n-1}\}$就是答案了

 //minamoto
#include<iostream>
#include<cstdio>
#include<cstring>
#define getc() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++)
char buf[<<],*p1=buf,*p2=buf;
template<class T>inline bool cmin(T&a,const T&b){return a>b?a=b,:;}
inline int read(){
#define num ch-'0'
char ch;bool flag=;int res;
while(!isdigit(ch=getc()))
(ch=='-')&&(flag=true);
for(res=num;isdigit(ch=getc());res=res*+num);
(flag)&&(res=-res);
#undef num
return res;
}
const int N=,M=,inf=0x01010101;
int a[N][N],f[M][M],g[N][M],ne[M],lg[M];
int n,m,S,s,l,x,y,v;
int main(){
// freopen("testdata.in","r",stdin);
memset(a,,sizeof(a));
memset(g,,sizeof(g));
n=read(),m=read();
S=(<<n)-;
for(int i=;i<n;++i) lg[<<i]=i;
while(m--){
x=read(),y=read(),v=read();
if(a[--x][--y]>v) a[x][y]=a[y][x]=v;
}
for(int i=;i<=S;++i){
v=;
for(int j=s=S^i;j;j=(j-)&s)
ne[j]=v,v=j;
//枚举i的补集,同时为了保证转移正确性要反着转移才行
for(int j=v;j;j=ne[j]){
x=lg[j&-j],v=inf;
for(y=;y<n;++y)
if(<<y&i) cmin(v,a[x][y]);
f[i][j]=f[i][j^(j&-j)]+v;
}
}
for(int i=;i<=S;i<<=) g[][i]=;
for(int l=;l<n;++l)
for(int i=;i<=S;++i)
for(int j=i;j;j=(j-)&i)
cmin(g[l][i],g[l-][i^j]+f[i^j][j]*l);
int v=0x3f3f3f3f;
for(int l=;l<=n;++l) cmin(v,g[l][S]);
printf("%d\n",v);
return ;
}

洛谷P3959 宝藏(状压dp)的更多相关文章

  1. [Luogu P3959] 宝藏 (状压DP+枚举子集)

    题面 传送门:https://www.luogu.org/problemnew/show/P3959 Solution 这道题的是一道很巧妙的状压DP题. 首先,看到数据范围,应该状压DP没错了. 根 ...

  2. P3959 宝藏 状压dp

    之前写了一份此题关于模拟退火的方法,现在来补充一下状压dp的方法. 其实直接在dfs中状压比较好想,而且实现也很简单,但是网上有人说这种方法是错的...并不知道哪错了,但是就不写了,找了一个正解. 正 ...

  3. 洛谷P2831 愤怒的小鸟(状压dp)

    题意 题目链接 Sol 这题....我样例没过就A了??..算了,就当是样例卡精度吧.. 直接状压dp一下,\(f[sta]\)表示干掉\(sta\)这个集合里面的鸟的最小操作数 转移的时候判断一下一 ...

  4. LOJ P3959 宝藏 状压dp noip

    https://www.luogu.org/problemnew/show/P3959 考场上我怎么想不出来这么写的,状压白学了. 直接按层次存因为如果某个点在前面存过了则肯定结果更优所以不用在意各点 ...

  5. 【题解】P3959 宝藏 - 状压dp / dfs剪枝

    P3959 宝藏 题目描述 参与考古挖掘的小明得到了一份藏宝图,藏宝图上标出了 n 个深埋在地下的宝藏屋, 也给出了这 n 个宝藏屋之间可供开发的m  条道路和它们的长度. 小明决心亲自前往挖掘所有宝 ...

  6. 洛谷P3959 宝藏(NOIP2017)(状压DP,子集DP)

    洛谷题目传送门 Dalao的题解多数是什么模拟退火.DFS剪枝.\(O(3^nn^2)\)的状压DP之类.蒟蒻尝试着把状压改进了一下使复杂度降到\(O(3^nn)\). 考虑到每条边的贡献跟它所在的层 ...

  7. 洛谷$P3959\ [NOIp2017]$ 宝藏 状压$dp$

    正解:状压$dp$ 解题报告: 传送门$QwQ$ $8102$年的时候就想搞这题了,,,$9102$了$gql$终于开始做这题了$kk$ 发现有意义的状态只有当前选的点集和深度,所以设$f_{i,j} ...

  8. [NOIP2017]宝藏 状压DP

    [NOIP2017]宝藏 题目描述 参与考古挖掘的小明得到了一份藏宝图,藏宝图上标出了 n 个深埋在地下的宝藏屋, 也给出了这 n 个宝藏屋之间可供开发的 m 条道路和它们的长度. 小明决心亲自前往挖 ...

  9. 洛谷P3959 宝藏

    去年NOIP第二毒瘤(并不)的题终于被我攻克了,接下来就只剩noip难度巅峰列队了. 首先说一下三种做法:随机化,状压DP和搜索. 前两种做法我都A了,搜索实在是毒瘤,写鬼啊. 有些带DFS的记忆化搜 ...

随机推荐

  1. vue应用示例

    1 . 实现轮播图 <!DOCTYPE html> <html lang="zh-CN"> <head> <meta charset=&q ...

  2. 五年java工作应具备的技能

    具有一到五年开发经验 需要学习内容很多 JVM/分布式/高并发/性能优化/Spring MVC/Spring Boot/Spring Cloud/MyBatis/Netty源码分析等等等 01.透彻理 ...

  3. Vue 数组中更新属性值后,视图不更新,等待其他元素更新后会触发的解决办法

    因为 JavaScript 的限制,Vue.js 不能检测到下面数组变化: 直接用索引设置元素,如 vm.items[0] = {}: 修改数据的长度,如 vm.items.length = 0. t ...

  4. Eclipse中导入github上的项目

    Eclipse中导入github上的项目 转载至: http://blog.csdn.net/hil2000/article/details/8566456 1.首先在github.com上申请一个账 ...

  5. 搭建LoadRunner中的场景(三)场景的执行计划

    所谓场景操作,包括初始化用户组.启动用户组各用户以及停止虚拟用户的全过程.依据设置不同,执行过程中可以最多有5类操作,分别是启动用户组(start group).初始化(Initialize).启动虚 ...

  6. codeforces 658B B. Bear and Displayed Friends(优先队列)

    题目链接: B. Bear and Displayed Friends time limit per test 2 seconds memory limit per test 256 megabyte ...

  7. [转]深入了解 CSS3 新特性

    简介 CSS 即层叠样式表(Cascading Stylesheet).Web 开发中采用 CSS 技术,可以有效地控制页面的布局.字体.颜色.背景和其它效果.只需要一些简单的修改,就可以改变网页的外 ...

  8. PowerShell自动部署网站—(2)、安装.Net Framework

    #$PSScriptRoot = "D:\Website":$PSScriptRoot 用于获取执行脚本所在的目录,但是PowerShell 2.0 不支持,需要人为赋值成绝对路径 ...

  9. noip2011普及组:统计单词

    题目描述 一般的文本编辑器都有查找单词的功能,该功能可以快速定位特定单词在文章中的位 置,有的还能统计出特定单词在文章中出现的次数. 现在,请你编程实现这一功能,具体要求是:给定一个单词,请你输出它在 ...

  10. 事务之六:spring 嵌套事务

    一.基本概念 事务的隔离级别,事务传播行为见<事务之二:spring事务(事务管理方式,事务5隔离级别,7个事务传播行为,spring事务回滚条件) > 二. 嵌套事务示例 2.1.Pro ...